B.Tech. (Agril. Engg.) Course curricula as per Vth Deans' Committee to be approved by AC on 15.10.2016

Semester 2017-18
(B. Tech. Agricultural Engineering)

Syllabus

Baba Sahab Dr. Bhim Rao Ambedkar
College of Agril. Engineering & Technology
Chandra Shekhar Azad University of Ag & Technology
Campus-Etawah-206001
B.Tech. (Agril Engg.) Course curricula as per Vth Deans' Committee to be approved by AC on 15.10.2016

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Department with number of courses and Course title</th>
<th>Credit Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dept. of Basic Engineering Applied Sciences</td>
<td>75 (45+30)</td>
</tr>
<tr>
<td></td>
<td>Basic Engineering (18)</td>
<td>44 (25+19)</td>
</tr>
<tr>
<td>1</td>
<td>Surveying and Levelling</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>2</td>
<td>Engineering Mechanics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>Strength of Materials</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>4</td>
<td>Design of Structures</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>5</td>
<td>Fluid Mechanics and Open Channel Hydraulics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>6</td>
<td>Building Construction and Cost Estimation</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>7</td>
<td>Soil Mechanics</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>8</td>
<td>Engineering Drawing</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>9</td>
<td>Workshop Technology and Practice</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>10</td>
<td>Heat and Mass Transfer</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>11</td>
<td>Machine Design</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>12</td>
<td>Auto CAD Applications</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>13</td>
<td>Thermodynamics, Refrigeration and Air Conditioning</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>14</td>
<td>Theory of Machines</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>15</td>
<td>Electrical Machines and Power Utilization</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>16</td>
<td>Applied Electronics and Instrumentation</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>17</td>
<td>Computer Programming and Data Structures</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>18</td>
<td>Web Designing and Internet Applications</td>
<td>2(1+1)</td>
</tr>
<tr>
<td></td>
<td>Applied Sciences (11)</td>
<td>31(20+11)</td>
</tr>
<tr>
<td>1</td>
<td>Principles of Agronomy</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2</td>
<td>Principles of Soil Science</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>Principles of Horticultural Crops and Plant Protection</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>4</td>
<td>Engineering Physics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5</td>
<td>Engineering Chemistry</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>6</td>
<td>Engineering Mathematics-I</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>7</td>
<td>Engineering Mathematics-II</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>8</td>
<td>Engineering Mathematics-III</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>9</td>
<td>Communication Skills and Personality Development</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>10</td>
<td>Entrepreneurship Development and Business Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>11</td>
<td>Environmental Science and Disaster Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td></td>
<td>Dept. of Soil and Water Conservation Engineering (4)</td>
<td>10(6+4)</td>
</tr>
<tr>
<td>1</td>
<td>Watershed Hydrology</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>2</td>
<td>Soil and Water Conservation Engineering</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>Water Harvesting and Soil Conservation Structures</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4</td>
<td>Watershed Planning and Management</td>
<td>2(1+1)</td>
</tr>
<tr>
<td></td>
<td>Dept. of Irrigation and Drainage Engineering (4)</td>
<td>10(6+4)</td>
</tr>
<tr>
<td>1</td>
<td>Irrigation Engineering</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2</td>
<td>Drainage Engineering</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>3</td>
<td>Groundwater, Wells and Pumps</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4</td>
<td>Sprinkler and Micro Irrigation Systems</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>Dept. of Farm Machinery and Power Engineering (5)</td>
<td>14(8+6)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1 Farm Machinery and Equipment-I</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>2 Farm Machinery and Equipment-II</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>3 Tractor and Automotive Engines</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>4 Tractor Systems and Controls</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>5 Tractor and Farm Machinery Operation and Maintenance</td>
<td>2(0+2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept. of Processing and Food Engineering (5)</th>
<th>13(8+5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Engineering Properties of Agricultural Produce</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>2 Agricultural Structures and Environmental Control</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3 Post Harvest Engineering of Cereals, Pulses and Oil Seeds</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4 Post Harvest Engineering of Horticultural Crops</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>5 Dairy and Food Engineering</td>
<td>3(2+1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept. of Renewable Energy Engineering (3)</th>
<th>9(6+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fundamentals of Renewable Energy Sources</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2 Renewable Power Sources</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3 Bio-energy Systems: Design and Applications</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>Elective Courses (Any 3 courses)</td>
<td>9 (6+3)</td>
</tr>
<tr>
<td>1 Floods and Control Measures</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2 Wasteland Development</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3 Information Technology for Land and Water Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4 Remote Sensing and GIS Applications</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5 Management of Canal Irrigation System</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>6 Minor Irrigation and Command Area Development</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>7 Precision Farming Techniques for Protected Cultivation</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>8 Water Quality and Management Measures</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>9 Landscape Irrigation Design and Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>10 Plastic Applications in Agriculture</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>11 Mechanics of Tillage and Traction</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>12 Farm Machinery Design and Production</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>13 Human Engineering and Safety</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>14 Tractor Design and Testing</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>15 Hydraulic Drives and Controls</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>16 Precision Agriculture and System Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>17 Food Quality and Control</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>18 Food Plant Design and Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>19 Food Packaging Technology</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>20 Development of Processed Products</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>21 Process Equipment Design</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>22 Photovoltaic Technology and Systems</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>23 Waste and By-products Utilization</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>24 Artificial Intelligence</td>
<td>3(3+0)</td>
</tr>
<tr>
<td>25 Mechatronics</td>
<td>3(2+1)</td>
</tr>
</tbody>
</table>

| Total course work Credit Hours (140) | 140 (85+55) |
| Educational tour (During first week of January) | 2 (0+2) |

| One-year Student READY (Rural and Entrepreneurship Awareness Development Yojana) programme | 40 (0+40) |
8-weeks Skill Development Trainings (I and II, each of 4-weeks) during semester break after IVth and Vth semester 10 (0+10)

10-weeks Industrial Attachment/Internship 10 (0+10)

10-weeks Experiential Learning On campus 10 (0+10)

20-weeks Project Planning and Report Writing 10 (0+10)

Total Credit Hours Load of B. Tech. (Agricultural Engineering) 182 (85+97)

Semester wise distribution of courses

Semester-I

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BSH 101</td>
<td>Engineering Mathematics-I</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2</td>
<td>BSH 102</td>
<td>Engineering Physics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>BSH 103</td>
<td>Engineering Chemistry</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4</td>
<td>AGS 101</td>
<td>Principles of Soil Science</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5</td>
<td>CED 101</td>
<td>Surveying and Levelling</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>6</td>
<td>CED 102</td>
<td>Engineering Mechanics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>7</td>
<td>CED 103</td>
<td>Engineering Drawing</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>8</td>
<td>MED 101</td>
<td>Heat and Mass Transfer</td>
<td>2(2+0)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>22 (13+9)</td>
</tr>
</tbody>
</table>

Semester-II

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BSH 104</td>
<td>Engineering Mathematics-II</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>2</td>
<td>BSH 105</td>
<td>Environmental Science and Disaster Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>AGS 102</td>
<td>Entrepreneurship Development and Business Management</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4</td>
<td>CED 104</td>
<td>Fluid Mechanics and Open Channel Hydraulics</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5</td>
<td>CED 105</td>
<td>Strength of Materials</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>6</td>
<td>MED 102</td>
<td>Workshop Technology and Practices</td>
<td>3(1+2)</td>
</tr>
<tr>
<td>7</td>
<td>MED 103</td>
<td>Theory of Machines</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>8</td>
<td>CSE 101</td>
<td>Web Designing and Internet Applications</td>
<td>2(1+1)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>21 (13+8)</td>
</tr>
</tbody>
</table>

Semester-III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGS 201</td>
<td>Principles of Horticultural Crops and Plant Protection</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>2</td>
<td>AGS 202</td>
<td>Principles of Agronomy</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>3</td>
<td>BSH 201</td>
<td>Communication Skills and Personality Development</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>4</td>
<td>BSH 202</td>
<td>Engineering Mathematics-III</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5</td>
<td>CED 201</td>
<td>Soil Mechanics</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>6</td>
<td>CED 202</td>
<td>Design of Structures</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>7</td>
<td>MED 201</td>
<td>Machine Design</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>8</td>
<td>MED 202</td>
<td>Thermodynamics, Refrigeration and Air Conditioning</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>9</td>
<td>ECE 201</td>
<td>Electrical Machines and Power Utilization</td>
<td>3(2+1)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>22 (14+8)</td>
</tr>
</tbody>
</table>

Semester-IV
<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CED 203</td>
<td>Building Construction and Cost Estimation</td>
<td>2(2+0)</td>
</tr>
<tr>
<td>2</td>
<td>CSE 201</td>
<td>Auto CAD Applications</td>
<td>2(0+2)</td>
</tr>
<tr>
<td>3</td>
<td>ECE 202</td>
<td>Applied Electronics and Instrumentation</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>4</td>
<td>FME 201</td>
<td>Tractor and Automotive Engines</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>5</td>
<td>PFE 201</td>
<td>Engineering Properties of Agricultural Produce</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>6</td>
<td>SWE 201</td>
<td>Watershed Hydrology</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>7</td>
<td>IDE 201</td>
<td>Irrigation Engineering</td>
<td>3(2+1)</td>
</tr>
<tr>
<td>8</td>
<td>IDE 202</td>
<td>Sprinkler and Micro Irrigation Systems</td>
<td>2(1+1)</td>
</tr>
<tr>
<td>9</td>
<td>REE 201</td>
<td>Fundamentals of Renewable Energy Sources</td>
<td>3(2+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>22 (13+9)</td>
</tr>
</tbody>
</table>

Skill Development Training-I summer Break June-July after 4th Semester (Student READY)

<table>
<thead>
<tr>
<th>Semester-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.No.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Skill Development Training-I summer Break June-July after 4th Semester (Student READY)
Semester-VII Student READY (Rural and Entrepreneurship Awareness Development Yojana)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AGE 401</td>
<td>Skill Development Training-II (Student READY) Registration only</td>
<td>5 (0+5)</td>
</tr>
<tr>
<td>2</td>
<td>AGE 402</td>
<td>10-weeks Industrial Attachment /Internship (Student READY)</td>
<td>10 (0+10)</td>
</tr>
<tr>
<td>3</td>
<td>AGE 403</td>
<td>10-weeks Experiential Learning On campus (Student READY)</td>
<td>10 (0+10)</td>
</tr>
<tr>
<td>4</td>
<td>AGE 404</td>
<td>Educational Tour (Registration only)</td>
<td>2 (0+2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>27 (0+27)</td>
</tr>
</tbody>
</table>

Educational Tour during winter/January Break

Semester-VIII Student READY (Rural and Entrepreneurship Awareness Development Yojana)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Title of the courses</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elective course</td>
<td></td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>2</td>
<td>Elective course</td>
<td></td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>3</td>
<td>Elective course</td>
<td></td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>4</td>
<td>AGE-405</td>
<td>Project Planning and Report Writing (Student READY)</td>
<td>10 (0+10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>19 (6+13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grand Total I to VIII semesters</td>
<td>182 (85+97)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Elective Courses (Any 3 Courses)</th>
<th>Credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWE 401</td>
<td>Floods and Control Measures</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>2</td>
<td>SWE 402</td>
<td>Wasteland Development</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>3</td>
<td>SWE 403</td>
<td>Information Technology for Land and Water</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>4</td>
<td>SWE 404</td>
<td>Remote Sensing and GIS Applications</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>5</td>
<td>IDE 401</td>
<td>Management of Canal Irrigation System</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>6</td>
<td>IDE 402</td>
<td>Minor Irrigation and Command Area Development</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>7</td>
<td>IDE 403</td>
<td>Water Quality and Management Measures</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>8</td>
<td>IDE 404</td>
<td>Landscape Irrigation Design and Management</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>9</td>
<td>FME 401</td>
<td>Tractor Design and Testing</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>10</td>
<td>FME 402</td>
<td>Hydraulic Drives and Controls</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>11</td>
<td>FME 403</td>
<td>Precision Farming Techniques for Protected Cultivation</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>12</td>
<td>FME 404</td>
<td>Plastic Applications in Agriculture</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>13</td>
<td>FME 405</td>
<td>Human Engineering and Safety</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>14</td>
<td>FME 406</td>
<td>Precision Agriculture and System Management</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>FME 407</td>
<td>Farm Machinery Design and Production</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FME 408</td>
<td>Mechanics of Tillage and Traction</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 401</td>
<td>Food Packaging Technology</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 402</td>
<td>Waste and By-products Utilization</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 403</td>
<td>Development of Processed Products</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 404</td>
<td>Food Plant Design and Management</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 405</td>
<td>Food Quality and Control</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>FPE 406</td>
<td>Process Equipment Design</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>REE 401</td>
<td>Photovoltaic Technology and Systems</td>
<td>3(2+1)</td>
<td></td>
</tr>
<tr>
<td>CSE 401</td>
<td>Artificial Intelligence</td>
<td>3(3+0)</td>
<td></td>
</tr>
<tr>
<td>MED 401</td>
<td>Mechatronics</td>
<td>3(2+1)</td>
<td></td>
</tr>
</tbody>
</table>

Total course work Credit Hours (140) 140 (85+55)

Department of Basic Engineering and Applied Sciences 73 (44+29)
Basic Engineering 44 (25+19)
Civil Engineering Section 17 (10+7)

1. **Surveying and Levelling 3 (1+2)**

Theory
Surveying: Introduction, classification and basic principles, Linear measurements. Chain surveying. Cross staff survey, Compass survey. Planimeter, Errors in measurements, their elimination and correction. Plane table surveying. Levelling, Leveling difficulties and error in leveling. Contouring, Computation of area and volume. Theodolite traversing. Introduction to setting of curves. Total station, Electronic Theodolite. Introduction to GPS survey Practical Chain survey of an area and preparation of map; Compass survey of an area and plotting of compass survey; Plane table surveying; Levelling. L section and X sections and its plotting; Contour survey of an area and preparation of contour map; Introduction of software in drawing contour; Theodolite surveying; Ranging by Theodolite, Height of object by using Theodolite; Setting out curves by Theodolite; Minor instruments. Use of total station.

References

2. **Engineering Mechanics 3 (2+1)**

Theory

Practical
Problems on composition and resolution of forces, moments of a force, couples, transmission of a couple, resolution of a force into a force & a couple; Problems relating to resultant of;
Co-planer force system, collinear force system, concurrent force system, co-planer concurrent force system, co-planer non-concurrent force system, Non-coplaner concurrent force system, Non-coplaner non-concurrent force system, system of couples in space; Problems relating to centroids of composite areas; Problems on moment of inertia, polar moment of inertia, radius of gyration, polar radius of gyration of composite areas; Equilibrium of concurrent – co-planer and non concurrent – co-planer force systems; Problems involving frictional forces;
Analysis of simple trusses by method of joints and method of sections; Analysis of simple trusses by graphical method; Problems relating to simple stresses and strains; Problems on shear force and bending moment diagrams; Problems relating to stresses in beams; Problems on torsion of shafts; Analysis of plane and complex stresses.

References

3. Strength of Materials 2 (1+1)

Theory

Practical
To perform the tension test on metal specimen (M.S., C.I.), to observe the behaviour of materials under load, to calculate the value of E, ultimate stress, permissible stress, percentage elongation etc. and to study its fracture; To perform the compression test on; Concrete cylinders &cubes, C.I. M.S. & Wood specimens and to determine various physical and mechanical properties; To perform the bending test on the specimens; M.S. Girder, Wooden beam, Plain concrete beams & R.C.C. beam, and to determine the various physical and mechanical properties; To determine Young’s modulus of elasticity of beam with the help of deflection produced at centre due to loads placed at centre & quarter points; To study the behaviour of materials (G.I. pipes, M.S., C.I.) under torsion and to evaluate various elastic constants; To study load deflection and other physical properties of closely coiled helical spring in tension and compression; To perform the Rockwell, Vicker’s and Brinell’s Hardness tests on the given specimens; To perform the Drop Hammer Test, Izod Test and Charpeay’s impact tests on the given specimens; To determine compressive & tensile strength of cement after making cubes and briquettes; To measure workability of concrete (slump test, compaction factor test); To determine voids ratio & bulk density of cement, fine aggregates and coarse aggregates; To determine fatigue strength of a given specimen; To write detail report emphasizing engineering importance of performing tension, compression, bending, torsion, impact and hardness tests on the materials.
References

4. Design of Structures 2 (1+1)

Theory

Practical

5. Fluid Mechanics and Open Channel Hydraulics 3 (2+1)

Theory
Properties of fluids: Ideal and real fluid. Pressure and its measurement, Pascal’s law, pressure forces on plane and curved surfaces, centre of pressure, buoyancy, meta centre and meta centric height, condition of floatation and stability of submerged and floating bodies; Kinematics of fluid flow: Lagrangian and Eulerian description of fluid motion, continuity equation, path lines, streak lines and stream lines, stream function, velocity potential and flow net. Types of fluid flow, translation, rotation, circulation and vorticity, Vortex motion; Dynamics of fluid flow, Bernoulli’s theorem, venturimeter, orifice meter and nozzle, siphon; Laminar flow: Stress strain relationships, flow between infinite parallel plates both plates fixed, one plate moving, discharge, average velocity; Laminar and turbulent flow in pipes, general equation for head loss Darcy, Equation, Moody’s diagram, Minor and major hydraulic losses through pipes and fittings, flow through network of pipes, hydraulic gradient and energy gradient; Flow through orifices (Measurement of Discharge, Measurement of Time),Flow through Mouthpieces, Flow over Notches, Flow over weirs, Chezy’s formula for loss of head in pipes, Flow through simple and compound pipes, Open channel design and hydraulics: Chezy’s formula, Bazin’s formula, Kutter’s Manning’s formula, Velocity and Pressure profiles in open channels, Hydraulic jump; Dimensional analysis and similitude: Rayleigh’s method and Buckingham’s ‘Pi’ theorem, types of similarities, dimensional analysis, dimensionless numbers. Introduction to fluid machinery.

Practical
Study of manometers and pressure gauges; Verification of Bernoulli’s theorem; Determination of coefficient of discharge of venturi-meter and orifice meter; Determination of coefficient of friction in pipeline; Determination of coefficient of discharge for rectangular and triangular notch; Determination of coefficient of discharge, coefficient of velocity and coefficient of contraction for flow through orifice; Determination of coefficient of discharge
for mouth piece; Measurement of force exerted by water jets on flat and hemispherical vanes; Determination of meta-centric height; Determination of efficiency of hydraulic ram; Performance evaluation of Pelton and Francis turbine; Study of current meter; Velocity distribution in open channels and determination of Manning’s coefficient of rugosity.

Suggested Readings

6. Building Construction and Cost Estimation 2(2+0)

Theory

Suggested Readings

7. Soil Mechanics 2 (1+1)

Theory
Introduction of soil mechanics, field of soil mechanics, phase diagram, physical and index properties of soil, classification of soils, effective and neutral stress, elementary concept of Boussinesq and Wester guards analysis, new mark influence chart. Seepage Analysis; Quick condition-two dimensional flow-Laplace equation, Velocity potential and stream function, Flow net construction. Shear strength, Mohr stress circle, theoretical relationship between principle stress circle, theoretical relationship between principal stress, Mohr coulomb failure theory, effective stress principle. Determination of shear parameters by direct shear test, triangle test & vane shear test. Numerical exercise based on various types of tests. Compaction, composition of soils standard and modified protector test, abbot compaction and Jodhpur mini compaction test field compaction method and control. Consolidation of soil: Consolidation of soils, one dimensional consolidation spring analogy, Terzaghi’s theory, Laboratory consolidation test, calculation of void ratio and coefficient of volume change, Taylor’s and Casagrande’s method, determination of coefficient of consolidation. Earth pressure: plastic equilibrium in soils, active and passive states, Rankine’s theory of earth
pressure, active and passive earth pressure for cohesive soils, simple numerical exercises. Stability of slopes: introduction to stability analysis of infinite and finite slopes friction circle method, Taylor’s stability number.

Practical
Determination of water content of soil; Determination of specific gravity of soil; Determination of field density of soil by core cutter method; Determination of field density by sand replacement method; Grain size analysis by sieving (Dry sieve analysis); Grain size analysis by hydrometer method; Determination of liquid limit by Casagrande’s method; Determination of liquid limit by cone penetrometer and plastic limit; Determination of shrinkage limit; Determination of permeability by constant head method; Determination of permeability by variable head method; Determination of compaction properties by standard proctor test; Determination of shear parameters by Direct shear test; Determination of unconfined compressive strength of soil; Determination of shear parameters by Tri-axial test; Determination of consolidation properties of soils.

Suggested Readings

(i) Mechanical Engineering Section 16 (9+7)

1. **Engineering Drawing 2 (0+2)**

Practical
Introduction of drawing scales; First and third angle methods of projection. Principles of orthographic projections; References planes; Points and lines in space and traces of lines and planes; Auxiliary planes and true shapes of oblique plain surface; True length and inclination of lines; Projections of solids (Change of position method, alteration of ground lines); Section of solids and Interpenetration of solid surfaces; Development of surfaces of geometrical solids; Isometric projection of geometrical solids. Preparation of working drawing from models and isometric views. Drawing of missing views. Different methods of dimensioning. Concept of sectioning. Revolved and oblique sections. Sectional drawing of simple machine parts. Types of rivet heads and riveted joints. Processes for producing leak proof joints. Symbols for different types of welded joints. Nomenclature, thread profiles, multi start threads, left and right hand threads. Square headed and hexagonal nuts and bolts. Conventional representation of threads. Different types of lock nuts, studs, machine screws, cap screws and wood screws. Foundation bolts. Forms of screw threads, representation of threads, Bolts- headed centre, stud screws, set screws, butt, hexagonal and square; keys-types, taper, rank taper, hollow saddle etc.

Suggested Readings
2. Workshop Technology and Practice 3 (1+2)

Theory
Introduction to various carpentry tools, materials, types of wood and their characteristics and Processes or operations in wood working; Introduction to Smithy tools and operations; Introduction to welding, types of welding, Oxyacetylene gas welding, types of flames, welding techniques and equipment. Principle of arc welding, equipment and tools. Casting processes; Classification, constructional details of center lathe, Main accessories and attachments. Main operations and tools used on center lathes. Types of shapers, Constructional details of standard shaper. Work holding devices, shaper tools and main operations. Types of drilling machines. Constructional details of pillar types and radial drilling machines. Work holding and tool holding devices. Main operations. Twist drills, drill angles and sizes. Types and classification. Constructional details and principles of operation of column and knee type universal milling machines. Plain milling cutter. Main operations on milling machine.

Practical
Preparation of simple joints: Cross half Lap joint and T-Halving joint; Preparation of Dovetail joint, Mortise and tenor joint; Jobs on Bending, shaping etc.; Jobs on Drawing, Punching, Rivetting. Introduction to tools and measuring instruments for fitting; Jobs on sawing, filing and right angle fitting of MS Flat; Practical in more complex fitting job; Operations of drilling., reaming, and threading with tap and dies; Introduction to tools and operations in sheet metal work; Making different types of sheet metal joints using G.I. sheets. Introduction to welding equipment, processes tools, their use and precautions; Jobs on ARC welding – Lap joint, butt joint; T-Joint and corner joint in Arc welding; Gas welding Practice Lab, butt and T-Joints; Introduction to metal casting equipment, tools and their use; Mould making using one-piece pattern and two pieces pattern; Demonstration of mould making using sweep pattern, and match plate patterns; Introduction to machine shop machines and tools; Demonstration on Processes in machining and use of measuring instruments; Practical jobs on simple turning, step turning; Practical job on taper turning, drilling and threading; Operations on shaper and planer, changing a round MS rod into square section on a shaper; Demonstration of important operations on a milling machine, making a plot, gear tooth forming and indexing; Any additional job.

Suggested Readings

3. Heat and Mass Transfer 2 (2+0)

Theory

Suggested Readings

4. Machine Design 2 (2+0)

Theory

Suggested Readings

5. Auto CAD Applications 2 (0+2)

Practical

Suggested Readings
& Company Ltd., New Delhi.

6. Thermodynamics, Refrigeration and Air Conditioning 3 (2+1)

Theory

Practical
Tutorials on thermodynamic air cycles. Study and application of P V and T S chart in refrigeration, P H chart (or) Mollier diagram in refrigeration, Numerical on air refrigeration cycle systems. Numerical on vapour compression cycle refrigeration system, Study of domestic water cooler, Study of domestic household refrigerator, Study of absorption type solar refrigeration system. Study cold storage for fruit and vegetables, Freezing load and time calculations for food materials. Determination of refrigeration parameters using refrigeration tutor – II, Numerical on design of air conditioning systems, Study of window air conditioner, Study on repair and maintenance of refrigeration and air-conditioning systems. Visit to chilling or ice making and cold storage plants.

Suggested Readings

7. Theory of Machines 2 (2+0)

Theory
Elements, links, pairs, kinematics chain, and mechanisms. Classification of pairs and echanisms. Lower and higher pairs. Four bar chain, slider crank chain and their inversions. Determination of velocity and acceleration using graphical (relative velocity and acceleration) method. Instantaneous centers. Types of gears. Law of gearing, velocity of sliding between two teeth in mesh. Involute and cycloidal profile for gear teeth. Spur gear, nomenclature,

Suggested Readings

(ii) Electrical and Computer Engineering Section 11 (6+5)

1. Electrical Machines and Power Utilization 3 (2+1)

Theory

Electro motive force, reluctance, laws of magnetic circuits, determination of ampere-turns for series and parallel magnetic circuits, hysteresis and eddy current losses, Transformer: principle of working, construction of single phase transformer, EMF equation, phasor diagram on load, leakage reactance, voltage regulation, power and energy efficiency, open circuit and short circuit tests, principles, operation and performance of DC machine (generator and motor), EMF and torque equations, armature reaction, commutation, excitation of DC generator and their characteristics, DC motor characteristics, starting of shunt and series motor, starters, speed control methods-field and armature control, polyphase induction motor: construction, operation, phasor diagram, effect of rotor resistance, torque equation, starting and speed control methods, single phase induction motor: double field revolving theory, equivalent circuit, characteristics, phase split, shaded pole motors, various methods of three phase power measurement; power factor, reactive and apparent power, Concept and analysis of balanced poly-phase circuits; Series and parallel resonance.

Practical

To obtain load characteristics of d.c. shunt/series /compound generator; To study characteristics of DC shunt/ series motors; To study d.c. motor starters; To Perform load-test on 3 ph. induction motor & to plot torque V/S speed characteristics; To perform no-load & blocked – rotor tests on 3 ph. Induction motor to obtain equivalent ckt. parameters & to draw circle diagram; To study the speed control of 3 ph. induction motor by cascading of two induction motors, i.e. by feeding the slip power of one motor into the other motor; To study star- delta starters physically and (a) to draw electrical connection diagram (b) to start the 3 ph. induction motor using it. (c) to reverse the direction of 3 ph. I.M.; To start a 3-phase slip –
ring induction motor by inserting different levels of resistance in the rotor ckt. and to plot torque –speed characteristics; To perform no load & blocked –rotor test on 1 ph. induction motor & to determine the parameters of equivalent ckt. drawn on the basis of double revolving field theory; To perform load –test on 1 ph. induction motor & plot torque –speed characteristics; To study power consumed in a three-phase circuit; Two lights in series controlled by one switch; Two lights in parallel controlled by one switch.

Suggested Readings

2. Applied Electronics and Instrumentation 3(2+1)

Theory

Practical
To study V-I characteristics of p-n junction diode: To study half wave. full wave and bridge rectifier: To study transistor characteristics in CE configurations: To design and study fixed and self bias transistor: To design and study potential divider bias transistor: To study a diode as clipper and clamer: To study a OP-AMP IC 741 as inverting and non- inverting amplifier: To study a OP-AMP IC 741 as differentiator and integrator to study a differential amplifier using two transistor: To study a OP-AMP IC 741 as differential amplifier: To study a zener regulator circuit: To study a OP-AMP IC 741 as a active rectifier: To study a OP-AMP IC 741 as a comparator: To familiarize with various types of transducers.

Suggested Readings

3. Computer Programming and Data Structures 3 (1+ 2)

Theory
Introduction to high level languages, Primary data types and user defined data types, Variables, typecasting, Operators, Building and evaluating expressions, Standard library functions, Managing input and output, Decision making, Branching, Looping, Arrays, User defined functions, passing arguments and returning values, recursion, scope and visibility of a variable, String functions, Structures and union, Pointers, Stacks, Push/Pop operations, Queues, Insertion and deletion operations, Linked lists.

Practical
Familiarizing with Turbo C IDE; Building an executable version of C program; Debugging a C program; Developing and executing simple programs; Creating programs using decision making statements such as if, go to & switch; Developing program using loop statements while, do & for; Using nested control structures; Familiarizing with one and two dimensional arrays; Using string functions; Developing structures and union; Creating user defined functions; Using local, global & external variables; Using pointers; Implementing Stacks; Implementing push/pop functions; Creating queues; Developing linked lists in C language; Insertion/Deletion in data structures.

Suggested Readings

4. Web Designing and Internet Applications 2 (1+1)

Theory

Practical
Understanding loop, arrays, Creating rollover image, Working with operator, GIF ANIMATION: Learning to use FTP, Setting FTP, Uploading of site, Using Control panel, FTP UPLOADING SITE: Understanding gif animation interface, Knowing GIF file format, Creating basic web banners, Creating web banners with effects, Creating animated web buttons.

Suggested Readings

(iii) Applied Sciences 29 (19+10)

1. Principles of Agronomy 3(2+1)

Theory

Practical
Identification of crops and their varieties, seeds, manures, fertilizers and weeds; Fertilizer application methods; Different weed control methods; Practice of ploughing, Practice of Puddling, Practice of sowing.

Suggested Readings

2. Principles of Soil Science 3(2+1)

Theory
Nature and origin of soil; soil forming rocks and minerals, their classification and decomposition, soil forming processes, classification of soils – soil taxonomy orders; important soil physical properties; and their importance; soil particle distribution; soil inorganic colloids – their composition, properties and origin of charge; ion exchange in soil and nutrient availability; soil organic matter – its composition and decomposition, effect on soil fertility; soil reaction – acidic, saline and sodic soils; quality or irrigation water; essential plants nutrients – their functions and deficiency symptoms in plants; important inorganic fertilizers and their reactions in soils. Use of saline and sodic water for crop production, Gypsum requirement for reclamation of sodic soils and neutralising RSC; Liquid fertilisers and their solubility and compatibility.
Practical
Identification of rocks and minerals; Examination of soil profile in the field; Collection of Soil Sample; Determination of bulk density; particle density and porosity of soil; Determination of organic carbon of soil; Determination of Nitrogen, Determination of Phosphorus and Determination of Potassium; Identification of nutrient deficiency symptoms of crops in the field; Determination of gypsum requirement of sodic soils; Determination of water quality parameters.

Suggested Readings

3. Principles of Horticultural Crops and Plant Protection 2(1+1)

Theory
Scope of horticultural. Soil and climatic requirements for fruits, vegetables and floriculture crops, improved varieties, Criteria for site selection, layout and planting methods, nursery raising, commercial varieties/hybrids, sowing and planting times and methods, seed rate and seed treatment for vegetable crops; macro and micro propagation methods, plant growing structures, pruning and training, crop coefficients, water requirements and critical stages, fertilizer application, fertigation, irrigation methods, harvesting, grading and packaging, post harvest practices, Garden tools, management of orchard, Extraction and storage of vegetables seeds. Major pests and diseases and their management in horticulture crops.

Practical
Judging maturity time for harvesting of crop; Study of seed viability and germination test; Identification and description of important fruits, flowers and vegetable crops; Study of different garden tools; Preparation of nursery bed; Practices of pruning and training in some important fruit crops, visit to commercial greenhouse/ polyhouse; cultural operations for vegetable crops (sowing, fertilizer application, mulching, irrigation and weed control); seed extraction techniques; identification of important pests and diseases and their control.

Suggested Readings

4. Engineering Physics 3 (2+1)

Theory

Practical

To find the frequency of A.C. supply using an electrical vibrator; To find the low resistance using Carey Foster bridge without calibrating the bridge wire; To determine dielectric constant of material using De Sauty’s bridge; To determine the value of specific charge \((e/m) \) for electrons by helical method; To study the induced e.m.f. as a function of velocity of the magnet; To obtain hysteresis curve (B-H curve) on a C.R.O. and to determine related magnetic quantities; To study the variation of magnetic field with distance along the axis of a current carrying circular coil and to detuning the radius of the coil; To determine the energy band gap in a semiconductor using a p-n Junction diode; To determine the slit width from Fraunhofer diffraction pattern using laser beam; To find the numerical aperture of optical fiber; To set up the fiber optic analog and digital link; To study the phase relationships in L.R. circuit; To study LCR circuit; To study the variations of thermo emf of a copper-constantan thermo-couple with temperature; To find the wave length of light by prism.

Suggested Readings

5. Engineering Chemistry 3 (2+1)

Theory

Practical

Chromatographic analysis: Determination of molar refraction of organic compounds.

Suggested Readings

Theory

Matrices: Elementary transformations, rank of a matrix, reduction to normal form, Gauss-Jordon method to find inverse of a matrix, Eigen values and Eigen vectors, Cayley-Hamilton theorem, linear transformation, orthogonal transformations, diagonalisation of matrices, quadratic forms. PAQ form, Echelon form, Solution of linear equations, nature of rank, using Cayley-Hamilton theorem to find inverse of A. Differential calculus: Taylor’s and Maclaurin’s expansions; indeterminate form; curvature, function of two or more independent variables, partial differentiation, homogeneous functions and Euler’s theorem, composite functions, total derivatives, maxima and minima. Integral calculus: volumes and surfaces of revolution of curves; double and triple integrals, change of order of integration, application of double and triple integrals to find area and volume. Vector calculus: Differentiation of vectors, scalar and vector point functions, vector differential operator Del, Gradient of a scalar point function, Divergence and Curl of a vector point function and their physical interpretations, identities involving Del, second order differential operator; line, surface and volume integrals, Stoke’s, divergence and Green’s theorems (without proofs).

Practical

Tutorials on rank of a matrix, reduction to normal form, consistency and solution of linear equations, eigen values and eigen vectors, Cayley-Hamilton theorem, diagonalisation of matrices, quadratic forms; Taylor’s and Maclaurin’s expansion, indeterminate form, curvature, tracing of curves, partial differentiation, maxima and minima, volume and surface of revolution, multiple integrals, Beta and Gama functions, differentiation of vectors, gradient, divergence and curl of a vector point function, line, surface and volume integrals, Stoke’s divergence and Green’s Theorems.

Suggested Readings

7. Engineering Mathematics – II 3(2+1)

Theory

Ordinary differential equations: Exact and Bernoulli’s differential equations, equations reducible to exact form by integrating factors, equations of first order and higher degree, Clairaut’s equation, Differential equations of higher orders, methods of finding complementary functions and particular integrals, method of variation of parameters, Cauchy’s and Legendre’s linear equations, simultaneous linear differential equations with constant coefficients, series solution techniques, Bessel’s and Legendre’s differential equations. Functions of a Complex variable: Limit, continuity and analytic function, Cauchy-Riemann equations, Harmonic functions. Infinite series and its convergence, periodic functions, Fourier series, Euler’s formulae, Dirichlet’s conditions, functions having arbitrary period, even and odd functions, half range series, Harmonic analysis. Fourier Sine and Cosine Series, Fourier series for function having period 2L. Elimination of one and two arbitrary function. Partial differential equations: Formation of partial differential equations Higher...
order linear partial differential equations with constant coefficients, solution of non-linear partial differential equations, Charpit’s method, application of partial differential equations (one dimensional wave and heat flow equations, Laplace Equation.

Practical

Suggested Readings

8. Engineering Mathematics – III 3(2+1)

Theory
Numerical analysis and Laplace transformation: finite difference, various difference operators and their relationships. factorial notation, interpolation with equal integrals. Newton's forward and backward interpolation formula. Bessel's and Stirling's difference interpolation formulae. Interpolation with unequal intervals. Newton's divided difference formula. Lagrange’s interpolation formula. numerical differentiations, numerical integrations, difference equations and their solutions, numerical solutions of ordinary differential equations by Picard’s Taylor’s series. Fuller’s and modified Fuller’s methods. Runge-Kutta method; Laplace transformation and its applications to the solutions of ordinary and simultaneous differential equations. Testing of Hypothesis-Level of Significance-Degrees of freedom-Statistical errors, Large sample test (Z-test), Small sample test t-test (One tailed, two tailed and Paired tests), Testing of Significance through variance (F-test), Chi -Square test, contingency table, Correlation, Regression.

Practical
Interpolation, Numerical differentiation and integration solutions of difference equations, numerical solution of ordinary differential equations of first order and first degree, Laplace and inverse Laplace transformations and their application to solution of ordinary and simultaneous differential equations. Problems on One Sample, Two sample Z-tests when Population S.D. is known and unknown, Problems on one sample, Two sample and paired t-test Chi-Square test – 2x2 and m x n, Calculation of Correlation coefficient and its testing, Contingency Table and F-test.

Suggested Readings
Nageswara Rao G. Statistics for Agricultural Sciences. BS Publications.

9. Communication Skills and Personality Development 2 (1+1)

Theory
Communication Skills: Structural and functional grammar; meaning and process of communication, verbal and non-verbal communication; listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precis writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public
speaking; Group discussion. Organizing seminars and conferences.

Practical

Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, precis writing, summarizing, abstracting; individual and group presentations.

Suggested Readings

10. Entrepreneurship Development and Business Management 3 (2+1)

Theory

Practical Preparation – Strengths Weaknesses Opportunities and Threats (SWOT) analysis, Analysis of financial statements (Balance Sheet, Profit loss statement). Compounding and discounting, Break-even analysis Visit to agro-based industries – I, Visit to agro-based industries – II Study of Agro-industries Development Corporation, Ratio analysis I, Ratio analysis – II, Application of project appraisal technique – I(Undiscounted measures), Application of project appraisal technique – II(Discounted Measures), Formulation of project feasibility reports – Farm Machinery Project proposals as entrepreneur individual and group - Presentation of project proposals in the class.

Suggested Readings

11. Environmental Science and Disaster Management 3 (2+1)
Theory

Disaster Management: Natural Disasters and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion. Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents. Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community-based organizations and media. Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations.

Practical
Case Studies and Field work. Visit to a local area to document environmental assets river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban/ Rural/ Industrial/ Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc. Expected impact of climate change on agricultural production and water resources, Mitigation Strategies, Economics of climate change. Disaster Management introduction, Natural and Manmade Disaster Studies, Informatics for Disaster Management, Quantitative Techniques for Disaster Management Environmental Impact Assessment (EIA) and Disaster Management Disaster Management Policy Environmental Modelling.

Suggested Readings
(iv) Department of Soil and Water Conservation Engineering 10 (7+3)

1. Watershed Hydrology 2(1+1)

Theory

Practical

Suggested Readings

2. Soil and Water Conservation Engineering 3(2+1)

Theory
Bunds - contour and graded bunds - design and surplussing arrangements. Terraces - level and graded broad base terraces, bench terraces - planning, design and layout procedure, contour stonewall and trenching. Gully and ravine reclamation - principles of gully control - vegetative measures, temporary structures and diversion drains. Grassed waterways and design. Wind erosion- Factors affecting, mechanics, soil loss estimation and control measures - vegetative, mechanical measures, wind breaks and shelter belts and stabilization of sand dunes. Land capability classification. Rate of sedimentation, silt monitoring and storage loss in tanks.

Practical

Suggested Readings

3. Water Harvesting and Soil Conservation Structures 3(2+1)

Theory
requirements, planning for design, design procedures - hydrologic, hydraulic and structural design and stability analysis. Hydraulic jump and its application. Drop spillway - applicability, types - straight drop, box-type inlet spillways - description, functional use, advantages and disadvantages, straight apron and stilling basin outlet, structural components and functions. Loads on head wall, variables affecting equivalent fluid pressure, triangular load diagram for various flow conditions, creep line theory, uplift pressure estimation, safety against sliding, overturning, crushing and tension. Chute spillway - description, components, energy dissipaters, design criteria of Saint Antony Falls (SAF) stilling basin and its limitations. Drop inlet spillway - description, functional use and design criteria.

Practical

Suggested Readings

4. Watershed Planning and Management 2(1+1)

Theory
role of watershed associations, user groups and self-help groups. Planning and formulation of
project proposal for watershed management programme including cost-benefit analysis.

Practical
Exercises on delineation of watersheds using toposheets. Surveying and preparation of
watershed map. Quantitative analysis of watershed characteristics and parameters. Watershed
investigations for planning and development. Analysis of hydrologic data for planning
watershed management. Water budgeting of watersheds. Prioritization of watersheds based
on sediment yield index. Study of functional requirement of watershed development
structures. Study of watershed management technologies. Practice on softwares for analysis
of hydrologic parameters of watershed. Study of role of various functionaries in watershed
development programmes. Techno-economic viability analysis of watershed projects. Visit to
watershed development project areas.

Suggested Readings
Management: A Field Manual. Central Soil and Water Conservation Research and Training
Institute, Dehradun.
Yash Publishing House, Bikaner.
Udaipur.
Tideman, E.M. 1999. Watershed Management: Guidelines for Indian

(v) Department of Irrigation and Drainage Engineering10 (6+4)

1. Irrigation Engineering 3(2+1)

Theory
Major and medium irrigation schemes of India, purpose of irrigation, environmental impact
of irrigation projects, source of irrigation water, present status of development and
utilization of different water resources of the country; measurement of irrigation water:
weir, flumes and orifices and other methods; open channel water conveyance system :
design and lining of irrigation field channels, on farm structures for water conveyance,
control & distribution; underground pipe conveyance system: components and design; land
grading: criteria for land levelling, land levelling design methods, estimation of earth work;
soil water plant relationship: soil properties influencing irrigation management, soil water
movement, infiltration, soil water potential, soil moisture characteristics, soil moisture
constants, measurement of soil moisture, moisture stress and plant response; water
requirement of crops: concept of evapotranspiration (ET), measurement and estimation of
ET, water and irrigation requirement of crops, depth of irrigation, frequency of irrigation,
irrigation efficiencies; surface methods of water application: border, check basin and furrow
irrigation- adaptability, specification and design considerations.

Practical
Measurement of soil moisture by different soil moisture measuring instruments;
measurement of irrigation water; measurement of infiltration characteristics; determination of
bulk density, field capacity and wilting point; estimation of evapotranspiration; land grading
methods; design of underground pipeline system; estimation of irrigation efficiency; study of advance, recession and computation of infiltration opportunity time; infiltration by inflow-outflow method; evaluation of border irrigation method; evaluation of furrow irrigation method; evaluation of check basin irrigation method.

Suggested Readings

2. **Drainage Engineering 2(1+1)**

Theory

Water logging- causes and impacts; drainage, objectives of drainage, familiarization with the drainage problems of the state; surface drainage coefficient, types of surface drainage, design of surface drains; sub-surface drainage: purpose and benefits, investigations of design parameters-hydraulic conductivity, drainable porosity, water table; derivation of Hooghoudt’s and Ernst’s drain spacing equations; design of subsurface drainage system; drainage materials, drainage pipes, drain envelope; layout, construction and installation of drains; drainage structures; vertical drainage; bio-drainage; mole drains; salt balance, reclamation of saline and alkaline soils, leaching requirements, conjunctive use of fresh and saline water.

Practical

In-situ measurement of hydraulic conductivity by single auger hole and inverse auger hole method; Estimation of drainage coefficients; installation of piezometer and observation wells; preparation of iso-bath and isobar maps; determination of drainable porosity; design of surface drainage systems; design of gravel envelop; design of subsurface drainage systems; determination of chemical properties of soil and water; study of drainage tiles and pipes; installation of sub-surface drainage system; cost analysis of surface and sub-surface drainage system.

Suggested Readings

FAO Irrigation and Drainage Paper No. 6, 9, 15, 16, 28 and 38. Rome, Italy.

3. **Groundwater, Wells and Pumps 3(2+1)**

Theory

Occurrence and movement of ground water; aquifer and its types; classification of wells, fully penetrating tubewells and open wells, familiarization of various types of bore wells; design of open wells; groundwater exploration techniques; methods of drilling of wells: percussion, rotary, reverse rotary; design of tubewell and gravel pack, installation of well screen,
completion and development of well; groundwater hydraulics- determination of aquifer parameters by different method such as Theis, Jacob and Chow’s, Theis recovery method; well interference, multiple well systems, estimation of ground water potential, quality of ground water; artificial groundwater recharge techniques; pumping systems: water lifting devices; different types of pumps, classification of pumps, component parts of centrifugal pumps, priming, pump selection, installation and trouble shooting, performance curves, effect of speed on capacity, head and power, effect of change of impeller dimensions on performance characteristics; hydraulic ram, propeller pumps, mixed flow pumps and their performance characteristics; deep well turbine pump and submersible pump.

Practical
Verification of Darcy's Law; study of different drilling equipments; sieve analysis for gravel and well screens design; estimation of specific yield and specific retention; testing of well screen; estimation of aquifer parameters by Theis method, Coopers-Jacob method, Chow method; Theis Recovery method; well design under confined and unconfined conditions; well losses and well efficiency; estimating ground water balance; study of artificial ground water recharge structures; study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps; installation of centrifugal pump; testing of centrifugal pump and study of cavitations; study of hydraulic ram; study and testing of submersible pump.

Suggested Readings

4. Sprinkler and Micro irrigation Systems 2(1+1)

Theory
Sprinkler irrigation: adaptability, problems and prospects, types of sprinkler irrigation systems; design of sprinkler irrigation system: layout selection, hydraulic design of lateral, sub-main and main pipe line, design steps; selection of pump and power unit for sprinkler irrigation system; performance evaluation of sprinkler irrigation system: uniformity coefficient and pattern efficiency;
Micro Irrigation Systems: types-drip, spray, & bubbler systems, merits and demerits, different components; Design of drip irrigation system: general considerations, wetting patters, irrigation requirement, emitter selection, hydraulics of drip irrigation system, design steps; necessary steps for proper operation of a drip irrigation system; maintenance of micro irrigation system: clogging problems, filter cleaning, flushing and chemical treatment; fertigation: advantages and limitations of fertigation, fertilizers solubility and their compatibility, precautions for successful fertigation system, fertigation frequency, duration and injection rate, methods of fertigation.

Practical
Study of different components of sprinkler irrigation system; design and installation of sprinkler irrigation system; determination of precipitation pattern, discharge and uniformity coefficient; cost economics of sprinkler irrigation system; study of different components of drip irrigation; design and installation of drip irrigation system; determination of pressure discharge relationship and emission uniformity for given emitter; study of different types of filters and determination of filtration efficiency; determination of rate of injection and calibration for chemigation/fertigation; design of irrigation and fertigation schedule for crops; field visit to micro irrigation system and evaluation of drip system; cost economics of drip irrigation system.
Suggested Readings

(vi) Department of Farm Machinery and Power Engineering 14 (8+6) 1. Farm Machinery and Equipment-I 3(2+1)

Theory

Practical
Familiarization with different farm implements and tools. Study of hitching systems, Problems on machinery management. Study of primary and secondary tillage machinery – construction, operation, adjustments and calculations of power and draft requirements. Study of sowing and planting equipment – construction, types, calculation for calibration and adjustments. Study of transplanters – paddy, vegetable, etc. Identification of materials of construction in agricultural machinery and study of material properties. Study of heat treatment processes subjected to critical components of agricultural machinery.

Suggested Readings
Culpin Claude. Farm Machinery.
Srivastava AC. Elements of Farm Machinery.
Lal Radhey and AC Datta. Agricultural Engineering.
2. Farm Machinery and Equipment-II 3(2+1)

Theory

Practical

Suggested Readings

3. Tractor and Automotive Engines 3(2+1)

Theory
Study of sources of farm power –conventional & non-conventional energy sources. Classification of tractors and IC engines. Review of thermodynamic principles of IC (CI & SI) engines and deviation from ideal cycle. General energy equation and heat balance sheet. Study of mechanical, thermal and volumetric efficiencies. Study of engine components their construction, operating principles and functions. Study of engine strokes and comparison of 2-stroke and 4-stroke engine cycles and CI and SI engines. Study of Engine Valve systems,

Practical

Introduction to different systems of CI engines; Engine parts and functions, working principles etc. Valve system – study, construction and adjustments; Oil & Fuel – determination of physical properties; Air cleaning system; Fuel supply system of SI engine; Diesel injection system & timing; Cooling system, and fan performance, thermostat and radiator performance evaluation; Part load efficiencies & governing; Lubricating system & adjustments; Starting and electrical system; Ignition system; Tractor engine heat balance and engine performance curves; Visit to engine manufacturer/ assembler/ spare parts agency.

Suggested Readings

4. Tractor Systems and Controls 3(2+1)

Theory

Deciphering the engine test codes.

Practical
Introduction to transmission systems and components; Study of clutch functioning, parts and design problem on clutch system; Study of different types of gear box, calculation of speed ratios, design problems on gear box; Study on differential and final drive and planetary gears; Study of brake systems and some design problems; Steering geometry and adjustments; Study of hydraulic systems in a tractor, hydraulic trainer and some design problems; Appraisal of various controls in different makes tractors in relation to anthropometric measurements. Determination of location of CG of a tractor, Moment of Inertia of a tractor. Traction performance of a traction wheel.

Suggested Readings

5. **Tractor and Farm Machinery Operation and Maintenance 2(0+2)**

Practical
Familiarization with different makes and models of agricultural tractors. Identification of functional systems including fuels system, cooling system, transmission system, steering and hydraulic systems. Study of maintenance points to be checked before starting a tractor. Familiarization with controls on a tractor. Safety rules and precautions to be observed while driving a tractor. Driving practice of tractor. Practice of operating a tillage tool (mould-board plough/disc plough) and their adjustment in the field. Study of field patterns while operating a tillage implement. Hitching & De-hitching of mounted and trail type implement to the tractor. Driving practice with a trail type trolley – forward and in reverse direction. Introduction to tractor maintenance – precautionary and break-down maintenance. Tractor starting with low battery charge. Introduction to trouble shooting in tractors. Familiarization with tools for general and special maintenance. Introduction to scheduled maintenance after 10, 100, 300, 600, 900 and 1200 hours of operation. Safety hints. Top end overhauling. Fuel saving tips. Preparing the tractor for storage. Care and maintenance procedure of agricultural machinery during operation and off-season. Repair and maintenance of implements – adjustment of functional parameters in tillage implements. Replacement of broken components in tillage implements. Replacement of furrow openers and change of blades of rotavators. Maintenance of cutter bar in a reaper. Adjustments in a thresher for different crops. Replacement of V-belts on implements. Setting of agricultural machinery workshop.

Suggested Readings
Southorn N. Tractor operation and maintenance.
1. Engineering Properties of Agricultural Produce 2 (1+1)

Theory
Classification and importance of engineering properties of Agricultural Produce, shape, size, roundness, sphericity, volume, density, porosity, specific gravity, surface area of grains, fruits and vegetables, Thermal properties, Heat capacity, Specific heat, Thermal conductivity, Thermal diffusivity, Heat of respiration; Co-efficient of thermal expansion, Friction in agricultural materials; Static friction, Kinetic friction, rolling resistance, angle of internal friction, angle of repose, Flow of bulk granular materials, Aero dynamics of agricultural products, drag coefficients, terminal velocity. Rheological properties; force, deformation, stress, strain, elastic, plastic and viscous behaviour, Newtonian and Non-Newtonian liquid, Visco-elasticity, Newtonian and Non-Newtonian fluid, Pseudo-plastic, Dilatant, Thixotropic, Rheoplectic and Bingham Plastic Foods, Flow curves. Electrical properties; dielectric loss factor, loss tangent, A.C. conductivity and dielectric constant, method of determination.

Practical
Determination of the shape and size of grains, fruits and vegetables, Determination of bulk density and angle of repose of grains, Determination of the particle density/true density and porosity of solid grains, Finding the co-efficient of external and internal friction of different crops, Finding out the terminal velocity of grain sample and study the separating behaviour in a vertical wind tunnel, Finding the thermal conductivity of different grains, Determination of specific heat of some food grains, Determination of hardness of food material and determination of viscosity of liquid foods.

Suggested Readings

2. Agricultural Structures and Environmental Control 3 (2+1)

Theory
Planning and layout of farmstead. Scope, importance and need for environmental control, physiological reaction of livestock environmental factors, environmental control systems and their design, control of temperature, humidity and other air constituents by ventilation and other methods, Livestock production facilities, BIS Standards for dairy, piggery, poultry and other farm structures. Design, construction and cost estimation of farm structures; animal shelters, compost pit, fodder silo, fencing and implement sheds, barn for cows, buffalo, poultry, etc. Storage of grains, Causes of spoilage, Water activity for low and high moisture food and its limits for storage, Moisture and temperature changes in grain bins; Traditional storage structures and their improvements, Improved storage structures (CAP, hermetic storage, Pusa bin, RCC ring bins), Design consideration for grain storage godowns, Bag
storage structures, Shallow and Deep bin, Calculation of pressure in bins, Storage of seeds. Rural living and development, rural roads, their construction cost and repair and maintenance. Sources of water supply, norms of water supply for human being and animals, drinking water standards and water treatment suitable to rural community. Site and orientation of building in regard to sanitation, community sanitation system; sewage system and its design, cost and maintenance, design of septic tank for small family. Estimation of domestic power requirement, source of power supply and electrification of rural housing.

Practical
Measurements for environmental parameters and cooling load of a farm building, Design and layout of a dairy farm, Design and layout of a poultry house, Design and layout of a goat house/sheep house, Design of a farm fencing system, Design of a feed/fodder storage structures, Design of grain storage structures, Design and layout of commercial bag and bulk storage facilities, Study and performance evaluation of different domestic storage structure, Estimation of a Farm building.

Suggested Readings
Pandey, P.H. Principles and practices of Agricultural Structures and Environmental Control, Kalyani Publishers, Ludhiana.
Nathanson, J.A. Basic Environmental Technology, Prentice Hall of India, New Delhi.
Khanna, P.N. Indian Practical Civil Engineer’s Hand Book, Engineer’s Publishers, New Delhi.

3. Post Harvest Engineering of Cereals, Pulses and Oil Seeds 3(2+1)

Theory
Cleaning and grading, aspiration, scalping; size separators, screens, sieve analysis, capacity and effectiveness of screens. Various types of separators: specific gravity, magnetic, disc, spiral, pneumatic, inclined draper, velvet roll, colour sorters, cyclone, shape graders. Size reduction: principle, Bond’s law, Kick’s law, Rittinger’s law, procedure (crushing, impact, cutting and shearing), Size reduction machinery: Jaw crusher, Hammer mill, Plate mill, Ball mill. Material handling equipment. Types of conveyors: Belt, roller, chain and screw. Elevators: bucket, Cranes & hoists. Trucks (refrigerated/ unrefrigerated), Pneumatic conveying. Drying: moisture content and water activity; Free, bound and equilibrium moisture content, isotherm, hysteresis effect, EMC determination, Psychrometric chart and its use in drying, Drying principles and theory, Thin layer and deep bed drying analysis, Falling rate and constant rate drying periods, maximum and decreasing drying rate period, drying equations, Mass and energy balance, Shed’s equation, Dryer performance, Different methods of drying, batch-continuous; mixing-non-mixing, Sun-mechanical, conduction, convection, radiation, superheated steam, tempering during drying, Different types of grain dryers: bin, flat bed, LSU, columnar, RPEC, fluidized, rotary and tray. Mixing: Theory of mixing of solids and pastes, Mixing index, types of mixers for solids, liquid foods and pastes. Milling of rice: Conditioning and parboiling, advantages and disadvantages, traditional methods, CFTRI and Jadavpur methods, Pressure parboiling method, Types of rice mills, Modern rice milling, different unit operations and equipment. Milling of wheat, unit

Practical

Performance evaluation of different types of cleaners and separators, Determination of separation efficiency, Study of different size reduction machines and performance evaluation, Determination of fineness modulus and uniformity index, Study of different types of conveying and elevating equipments, Study of different types of mixers. Measurement of moisture content: dry basis and wet basis, Study on drying characteristics of grains and determination of drying constant, Determination of EMC (Static and dynamic method), Study of various types of dryers, Study of different equipments in rice mills and their performance evaluation, Study of different equipments in pulse mills and their performance evaluation, Study of different equipments in oil mills and their performance evaluation, Type of process flow charts with examples relating to processing of cereals pulses and oil seeds, Visit to grain processing industries.

Suggested Readings

Geankoplis C. J. Transport processes and unit operations, Prentice Hall of India Pvt Ltd, New Delhi.
McCabe, W.L., Smith J.C. and Harriott, P. Unit operations of Chemical Engineering. McGraw Hill.

4. Post Harvest Engineering of Horticultural Crops 2 (1+1)

Theory

Importance of processing of fruits and vegetables, spices, condiments and flowers. Characteristics and properties of horticultural crops important for processing, Peeling: Different peeling methods and devices (manual peeling, mechanical peeling, chemical peeling, and thermal peeling), Slicing of horticultural crops: equipment for slicing, shredding, crushing, chopping, juice extraction, etc., Blanching: Importance and objectives; blanching methods, effects on food (nutrition, colour, pigment, texture), Chilling and freezing: Application of refrigeration in different perishable food products, Thermophilic, mesophilic & Psychrophilic micro-organisms, Chilling requirements of different fruits and vegetables, Freezing of food, freezing time calculations, slow and fast freezing, Equipment for chilling and freezing (mechanical & cryogenic), Effect on food during chilling and freezing, Cold storage heat load calculations and cold storage design, refrigerated vehicle and cold chain system, Dryers for fruits and vegetables, Osmo-dehydration, Packaging of horticultural commodities, Packaging requirements (in terms of light transmittance, heat, moisture and gas
proof, microorganisms, mechanical strength), Different types of packaging materials commonly used for raw and processed fruits and vegetables products, bulk and retail packages and packaging machines, handling and transportation of fruits and vegetables, Pack house technology, Minimal processing, Common methods of storage, Low temperature storage, evaporative cooled storage, Controlled atmospheric storage, Modified atmospheric packaging, Preservation Technology, General methods of preservation of fruits and vegetables, Brief description and advantages and disadvantages of different physical/chemical and other methods of preservation, Flowcharts for preparation of different finished products, Important parameters and equipment used for different unit operations, Post harvest management and equipment for spices and flowers, Quality control in Fruit and vegetable processing industry. Food supply chain.

Practical
Performance evaluation of peeler and slicer, Performance evaluation of juicer and pulper, Performance evaluation of blanching equipment, Testing adequacy of blanching, Study of cold storage and its design, Study of CAP and MAP storage, Minimal processing of vegetables, Preparation of value added products, Visit to fruit and vegetable processing industry, Visit to spice processing plant

Suggested Readings

5. Dairy and Food Engineering 3 (2+1)

Theory
Deterioration in food products and their controls, Physical, chemical and biological methods of food preservation. Nanotechnology: History, fundamental concepts, tools and techniques nanomaterials, applications in food packaging and products, implications, environmental impact of nanomaterials and their potential effects on global economics, regulation of nanotechnology. Dairy development in India, Engineering, thermal and chemical properties of milk and milk products, Process flow charts for product manufacture, Unit operation of various dairy and food processing systems. Principles and equipment related to receiving of milk, pasteurization, sterilization, homogenization, centrifugation and cream separation. Preparation methods and equipment for manufacture of cheese, paneer, butter and ice cream, Filling and packaging of milk and milk products; Dairy plant design and layout, Plant utilities; Principles of operation and equipment for thermal processing, Canning, Aseptic processing, Evaporation of food products: principle, types of evaporators, steam economy, multiple effect evaporation, vapour recompression, Drying of liquid and perishable foods: principles of drying, spray drying, drum drying, freeze drying, Filtration: principle, types of filters; Membrane separation, RO, Nano-filtration, Ultra filtration and Macro-filtration, equipment and applications, Non-thermal and other alternate thermal processing in Food processing.

Practical
Suggested Readings
Department of Renewable Energy Engineering 9(6+3)

6. Fundamentals of Renewable Energy Sources 3 (2+1)

Theory

Practical
Study of different types of solar cookers, solar water heating system, natural convection solar dryer, forced convection solar dryer, solar desalination unit, solar greenhouse for agriculture production, biogas plants, biomass gasifiers, biomass improved cook-stoves, solar photovoltaic system.

Suggested Readings

7. Renewable Power Sources 3 (2+1)

Theory
Energy consumption pattern & energy resources in India. Renewable energy options, potential and utilization. Biogas technology and mechanisms, generation of power from biogas, Power generation from urban, municipal and industrial waste. Design & use of different commercial sized biogas plant. Solar thermal and photovoltaic Systems for power generation. Central receiver (Chimney) and distributed type solar power plant, OTEC, MHD, hydrogen and fuel cell technology. Wind farms. Aero-generators. Wind power generation system. Power
generation from biomass (gasification & Dendro thermal), Mini and micro small hydel plants. Fuel cells and its associated parameters.

Practical
Performance evaluation of solar water heater; Performance evaluation of solar cooker; Characteristics of solar photovoltaic panel; evaluation of solar air heater/dryer; Performance evaluation of biomass gasifier engine system (throatless & downdraft), Performance evaluation of a fixed dome type biogas plant; Performance evaluation of floating drum type biogas plant; Estimation of calorific value of biogas & producer gas; Testing of diesel engine operation using dual fuel and gas alone.

Suggested Readings

8. **Bio-Energy Systems: Design and Applications 3 (2+1)**

Theory

Practical
Study of anaerobic fermentation system for industrial application, Study of gasification for industrial process heat, Study of biodiesel production unit, Study of biomass densification technique (briquetting, pelletization, and cubing). Integral bio energy system for industrial application, Study of bio energy efficiency in industry and commercial buildings, Study and demonstration of energy efficiency in building, Measuring efficiency of different insulation technique, Study of Brayton, Striling and Rankine cycles, Study of modern greenhouse technologies.

Suggested Readings
ELECTIVE COURSES
Each Institute will have option to offer 3 (three) need based elective courses equivalent to 9 Credit Hours as per the need of the state/industries/other stake holders under the proposed list of Elective Courses.

Floods and Control Measures 3(2+1)

Theory

Suggested Readings
Bureau of Reclamation. 1987. Design of Small Dams. US Department of Interior,
Washington DC, USA.
Food and Agriculture Organization of the United Nations, Rome.

Wasteland Development 3(2+1)

Theory

Suggested Readings

Information Technology for Land and Water Management 3(2+1)

Theory
Concept of Information Technology (IT) and its application potential. Role of IT in natural resources management. Existing system of information generation and organizations involved in the field of land and water management. Application and production of multimedia. Internet application tools and web technology. Networking system of information. Problems and prospects of new information and communication technology. Development of database concept for effective natural resources management. Application of remote sensing, geographic information system (GIS) and GPS. Rational data base management system. Object oriented approaches. Information system, decision support systems and expert systems. Agricultural information management systems - use of mathematical models and programmes. Application of decision support systems, multi sensor data loggers and overview of software packages in natural resource management. Video-conferencing of scientific information.

Practical
Multimedia production. Internet applications: E-mail, voice mail, web tools and technologies. Handling and maintenance of new information technologies and exploiting their potentials. Exercises on database management using database and spreadsheet programmes. Usage of remote sensing, GIS and GPS survey in information generation and processing. Exercises on running computer software packages dealing with water balance, crop production, land development, land and water allocation, watershed analysis etc. Exercises on simple decision support and expert systems for management of natural resources. Multimedia production using different softwares. Exercises on development of information system on selected theme(s). Video-conferencing of scientific information.

Suggested Readings

Remote Sensing and GIS Applications 3(2+1)

Theory
Basic component of remote sensing (RS), advantages and limitations of RS, possible use of RS techniques in assessment and monitoring of land and water resources; electromagnetic
spectrum, energy interactions in the atmosphere and with the Earth’s surface; major atmospheric windows; principal applications of different wavelength regions; typical spectral reflectance curve for vegetation, soil and water; spectral signatures; different types of sensors and platforms; contrast ratio and possible causes of low contrast; aerial photography; types of aerial photographs, scale of aerial photographs, planning aerial photography- end lap and side lap; stereoscopic vision, requirements of stereoscopic photographs; air-photo interpretation- interpretation elements; photogrammetry- measurements on a single vertical aerial photograph, measurements on a stereo-pair- vertical measurements by the parallax method; ground control for aerial photography; satellite remote sensing, multispectral scanner- whiskbroom and push-broom scanner; different types of resolutions; analysis of digital data- image restoration; image enhancement; information extraction, image classification, unsupervised classification, supervised classification, important consideration in the identification of training areas, vegetation indices; microwave remote sensing. GI Sand basic components, different sources of spatial data, basic spatial entities, major components of spatial data, Basic classes of map projections and their properties, Methods of data input into GIS, Data editing, spatial data models and structures, Attribute data management, integrating data (map overlay) in GIS, Application of remote sensing and GIS for the management of land and water resources.

Practical
Familiarization with remote sensing and GIS hardware; use of software for image interpretation; interpretation of aerial photographs and satellite imagery; basic GIS operations such as image display; study of various features of GIS software package; scanning, digitization of maps and data editing; data base query and map algebra. GIS supported case studies in water resources management.

Suggested Readings

Management of Canal Irrigation System3 (2+1)
Theory
Purpose benefits and ill effects of irrigation; typical network of canal irrigation system and its different physical components; canal classification based on source of water, financial output, purpose, discharge and alignment; canal alignment: general considerations for alignment; performance indicators for canal irrigation system evaluation, Estimation of water requirements for canal command areas and determination of canal capacity; water duty and delta, relationship between duty, base period and delta, factors affecting duty and method of
improving duty; silt theory: Kennedy’s theory, design of channels by Kennedy’s theory, Lacey’s regime theory and basic regime equations, design of channels by Lacey’s theory, maintenance of unlined irrigation canals, measurement of discharge in canals, rostering (canal running schedule) and warabandhi, necessity of canal lining: advantages and disadvantages, types of canal lining and desirable characteristics for the suitability of lining materials; design of lined canals; functions of distributary head and cross regulators; canal falls, their necessity and factors affecting canal fall; sources of surplus water in canals and types of canal escapes; requirements of a good canal outlet and types of outlet.

Practical
Estimation of water requirement of canal commands; determination of canal capacity; layout of canal alignments on topographic maps, drawing of canal sections in cutting, full banking and partial cutting and partial banking; determination of longitudinal section of canals; design of irrigation canals based on silt theories; design of lined canals; formulation of warabandhi; Study of canal outlets, regulators, escapes and canal falls.

Suggested Readings

Minor Irrigation and Command Area Development 3(2+1)
Theory
Factors affecting performance of irrigation projects; types of minor irrigation systems in India; lift irrigation systems: feasibility, type of pumping stations and their site selection, design of lift irrigation systems; tank Irrigation: grouping of tanks, storage capacity, supply works and sluices; command area development (CAD) programme-components, need, scope, and development approaches, historical perspective, command area development authorities-functions and responsibilities; on farm development works, reclamation works, use of remote sensing techniques for CAD works; water productivity: concepts and measures for enhancing water productivity; Farmers’ participation in command area development;
Practical
Preparation of command area development layout plan; Irrigation water requirement of crops; Preparation of irrigation schedules; Planning and layout of water conveyance system; design of surplus weir of tanks; determination of storage capacity of tanks; design of intake pipe and pump house.
Suggested Readings

Precision Farming Techniques for Protected Cultivation 3 (2+1)
Theory
Protected cultivation: Introduction, History, origin, development, National and International Scenario, components of green house, perspective, Types of green houses, polyhouses /shed nets, Cladding materials, Plant environment interactions – principles of limiting factors, solar
radiation and transpiration, greenhouse effect, light, temperature, relative humidity, carbon dioxide enrichment, Design and construction of green houses – site selection, orientation, design, construction, design for ventilation requirement using exhaust fan system, selection of equipment, Greenhouse cooling system – necessity, methods – ventilation with roof and side ventilators, evaporative cooling, different shading material fogging, combined fogging and fan-pad cooling system, design of cooling system, maintenance of cooling and ventilation systems, pad care etc. Greenhouse heating – necessity, components, methods, design of heating system. Root media – types – soil and soil less media, composition, estimation, preparation and disinfection, bed preparation. Planting techniques in green house cultivation. Irrigation in greenhouse and net house – Water quality, types of irrigation system, components, design, installation and material requirement. Fogging system for greenhouses and net houses – introduction, benefits, design, installation and material requirement. Maintenance of irrigation and fogging systems. Fertilization – nutrient deficiency symptoms and functions of essential nutrient elements, principles of selection of proper application of fertilizers, fertilizer scheduling, rate of application of fertilizers, methods, automated fertilizer application. Greenhouse climate measurement, control and management. Insect and disease management in greenhouse and net houses Selection of crops for greenhouse cultivation, major crops in greenhouse – irrigation requirement, fertilizer management, cultivation, harvesting and post harvest techniques; Economic analysis.

Practical

Estimation of material requirement for construction of greenhouse; Determination of fertilization schedule and rate of application for various crops; Estimation of material requirement for preparation of root media; Root media preparation, bed preparation and disinfections; Study of different planting techniques; Design and installation of irrigation system; Design and installation of fogging system; Greenhouse heating; Study of different greenhouse environment control instruments; Study of operation maintenance and fault detection in irrigation system; Study of operation maintenance and fault detection in fogging system; Economic analysis of greenhouses and net houses; Visit to greenhouses.

Suggested Readings

Water Quality and Management Measures 3 (2+1)

Theory

Natural factors affecting quality of surface water and groundwater, water quality objectives in relation to domestic, industrial and agricultural activities, drinking water quality standards, irrigation water quality classification as per USSL and All Indian Coordinated Research Project (AICRP) criteria, point and non-point water pollution sources, water contamination due to inorganic and organic compounds, water contamination related to agricultural chemicals, food industry, hydrocarbon and synthetic organic compounds. Arsenic and fluoride contamination in groundwater and remedial measures, water decontamination technologies, cultural and management practices for using poor quality water for irrigation.

Practical

Water quality analysis and classification according to USSL and AICRP criteria; soil chemical analysis and estimation of lime and gypsum requirements; study of salinity development under shallow and deep water table conditions; study of contamination movement and transport in soil profile; study of different water decontamination techniques; study of different cultural and management practices for using poor quality water for irrigation; field visit to industrial effluent disposal sites.
Suggested Readings
Landscape Irrigation Design and Management 3 (2+1)
Theory
Conventional method of landscape irrigation- hose irrigation system, quick release coupling system and portable sprinkler with hose pipes; Modern methods of landscape irrigation- pop-up sprinklers, spray pop-up sprinkler, shrub adopter, drip irrigation and bubblers; Merits and demerits of conventional and modern irrigation systems, types of landscapes and suitability of different irrigation methods, water requirement for different landscapes, Segments of landscape irrigation systems, Main components of modern landscape irrigation systems and their selection criteria; Types of pipes, pressure ratings, sizing and selection criteria; Automation system for landscape irrigation- main components, types of controllers and their application, Design of modern landscape irrigation systems, operation and maintenance of landscape irrigation systems.
Practical
Study of irrigation equipments for landscapes; Design and installation of irrigation system for landscape, determination of water requirement. Determination of power requirement, pump selection. Irrigation scheduling of landscapes, Study of irrigation controllers and other equipments, Use of AutoCAD in irrigation design: blocks & symbols, head layout, zoning and valves layout, pipe sizing, Pressure calculations etc., Visit to landscape irrigation system and its evaluation.
Suggested Readings

Plastic Applications in Agriculture 3(2+1)
Theory
in drying, preservation, handling and storage of agricultural produce, innovative plastic packaging solutions for processed food products. Plastic cap covers for storage of food grains in open. Use of plastics as alternate material for manufacturing farm equipment and machinery. Plastics for aquacultural engineering and animal husbandry - animal shelters, vermi-beds and inland fisheries. Silage film technique for fodder preservation. Agencies involved in the promotion of plasticulture in agriculture at national and state level. Human resource development in plasticulture applications.

Practical

Design, estimation and laying of plastic films in lining of canal, reservoir and water harvesting ponds. Study of plastic components of drip and sprinkler irrigation systems, laying and flushing of laterals. Study of components of subsurface drainage system. Study of different colour plastic mulch laying. Design, estimation and installation of green, poly and shade net houses, low tunnels etc. Study on cap covers for food grain storage, innovative packaging solutions - leno bags, crates, bins, boxes, vacuum packing, unit packaging, CAS and MAP and estimation. Study on use of plastics in nursery, plant protection, inland fisheries, animal shelters, preparation of vermi-bed and silage film for fodder preservation. Study of plastic parts in making farm machinery. Visits to nearby manufacturing units/dealers of PVC pipes, drip and sprinkler irrigation systems, greenhouse/ polyhouse/shadehouse/ nethouse etc. Visits to farmers' fields with these installations.

Suggested Readings

Mechanics of Tillage and Traction3(2+1)

Theory

Introduction to mechanics of tillage tools, engineering properties of soil, principles and concepts, stress strain relationship, design of tillage tools principles of soil cutting, design equation, force analysis, application of dimensional analysis in soil dynamics and traction prediction equation. Introduction to traction and mechanics, off road traction and mobility, traction model, traction improvement, tyre size, tyre lug geometry and their effects, tyre testing, soil compaction and plant growth, variability and application of GIS in soil dynamics. Practical

Measurement of static and dynamic soil parameters related to tillage, soil parameters related to puddling and floatation, draft for passive rotary and oscillating tools, slip and sinkage under dry and wet soil conditions and load and fuel consumption for different farm operations;
Weight transfer and tractor loading including placement and traction aids; Studies on tyres, tracks and treads under different conditions, and soil compaction and number of operations. Suggested Readings

Farm Machinery Design and Production 3(2+1)

Theory
Introduction to design parameters of agricultural machines & design procedure. Characteristics of farm machinery design. Research and development aspects of farm machinery. Design of standard power transmission components used in agricultural machines: mechanical & hydraulic units. Introduction to safety in power transmission. Application of design principles to the systems of selected farm machines. Critical appraisal in production of Agricultural Machinery; Advances in material used for agricultural machinery. Cutting tools including CNC tools and finishing tools. Advanced manufacturing techniques including powder metallurgy, EDM (Electro-Discharge Machining), Heat Treatment of steels including pack carburizing, shot pinning process, etc. Limits, Fits & Tolerances, Jigs & Fixtures. Industrial lay-out planning, Quality production management. Reliability. Economics of process selection. Familiarization with Project Report.

Practical
Familiarization with different design aspects of farm machinery and selected components. Solving design problems on farm machines & equipment Visit to Agricultural machinery manufacturing industry, Tractor manufacturing industry Jigs and Fixtures – study in relation to agricultural machinery. Fits, tolerances and limits; Layout planning of a small scale industry; Problems on Economics of process selection; Preparation of a project report; Case study for manufacturing of simple agricultural machinery.

Suggested Readings

Human Engineering and Safety 3(2+1)

Theory
Human factors in system development – concept of systems; basic processes in system development, performance reliability, human performance. Information input process, visual displays, major types and use of displays, auditory and factual displays. Speech communications. Biomechanics of motion, types of movements, Range of movements, strength and endurance, speed and accuracy, human control of systems. Human motor activities, controls, tools and related devices. Anthropometry: arrangement and utilization of work space, atmospheric conditions, heat exchange process and performance, air pollution. Dangerous machine (Regulation) act, Rehabilitation and compensation to accident victims, Safety gadgets for spraying, threshing, Chaff cutting and tractor & trailer operation etc.

Practical
Calibration of the subject in the laboratory using bi-cycle ergo-meter. Study and calibration of the subject in the laboratory using mechanical treadmill; Use of respiration gas meter from human energy point of view. Use of Heart Rate Monitor. Study of general fatigue of the subject using Blink ratio method, Familiarization with electro-myograph equipment, anthropometric measurements of a selected subjects. Optimum work space layout and locations of controls for different tractors. Familiarization with the noise and vibration
equipment. Familiarization with safety gadgets for various farm machines.

Suggested Readings

Tractor Design and Testing 3(2+1)

Theory

Practical
Design problem of tractor clutch – (Single/ Multiple disc clutch). Design of gear box(synchormesh/constant mesh), variable speed constant mesh drive; Selection of tractor tires – Problem solving. Problem on design of governor. Design and selection of hydraulic pump. Engine testing as per BIS code. Drawbar performance in the lab; PTO test and measure the tractor power in the lab/field; Determining the turning space, turning radius and brake test, hydraulic pump performance test and air cleaner and noise measurement test; Visit to tractor testing centre/industry.

Suggested Readings
Liljedahl J B & Others. Tractors and Their Power Units.

Hydraulic Drives and Controls 3(2+1)

Theory

Practical

Introduction to hydraulic systems. Study of hydraulic pumps, hydraulic actuators. Study of hydraulic motors, hydraulic valves, colour codes and circuits. Building simple hydraulic circuits, hydraulics in tractors. Introduction to pneumatics, pneumatics devices, pneumatics in agriculture; Use of hydraulics and pneumatics for robotics.

Suggested Readings

John Deere. Fundamentals of Service Hydraulics.

Precision Agriculture and System Management 3(2+1)

Theory

Precision Agriculture – need and functional requirements. Familiarization with issues relating to natural resources. Familiarization with equipment for precision agriculture including sowing and planting machines, power sprayers, land clearing machines, laser guided land levellers, straw-chopper, straw-balers, grain combines, etc. Introduction to GIS based precision agriculture and its applications. Introduction to sensors and application of sensors for data generation. Database management. System concept. System approach in farm machinery management, problems on machinery selection, maintenance and scheduling of operations. Application to PERT and CPM for machinery system management.

Practical

Familiarization with precision agriculture problems and issues. Familiarization with various machines for resource conservation. Solving problems related to various capacities, pattern efficiency, system limitation, etc. Problems related to cost analysis and inflation and problems related to selection of equipment, replacement, break-even analysis, time value of money etc.

Suggested Readings

Sigma and Jagmohan. Earth Moving Machinery. Wood and Stuart. Earth Moving Machinery.

Sharma DN and S Mukesh. Farm Power and Machinery Management Vol I.

Food Quality and Control 3(2+1)

Theory

Basics of Food Science and Food Analysis, Concept, objectives and need of food quality. Measurement of colour, flavour, consistency, viscosity, texture and their relationship with food quality and composition. Sampling; purpose, sampling techniques, sampling procedures for liquid, powdered and granular materials, Quality control, Quality control tools, Statistical quality control, Sensory evaluation methods, panel selection methods, Interpretation of sensory results. instrumental method for testing quality. Food adulteration and food safety.
TQM and TQC, consumer preferences and acceptance, Food Safety Management Systems GAP, GHP, GMP, Hazards and HACCP (Hazard analysis and critical control point), Sanitation in food industry (SSOP). Food Laws and Regulations in India, FSSAI, Food grades and standards BIS, AGMARK, PFA, FPO. ISO 9000, 22000 Series. CAC (Codex Alimentarius Commission), Traceability and Quality Assurance system in a process plant, Bio safety and Bioterrorism.

Practical
Examination of cereals & pulses from one of go-downs and market shops in relation to FPO and BIS specifications, Detection of adulteration and examination of ghee for various standards of AGMARK & BIS standards, Detection of adulteration and examination of spices for AGMARK and BIS standards, Detection of adulteration and examination of milk and milk products for BIS standards, Detection of adulteration and examination of fruit products such as jams, jellys, marmalades for FPO specification, Visit to quality control laboratory, Case study of statistical process control in food processing industry, Study of registration process and licensing procedure under FSSAI, Study of sampling techniques from food processing establishments, Visit to food processing laboratory and study of records and reports maintained by food processing laboratory.

Suggested Readings

Food Plant Design and Management 3 (2+1)

Theory
Food plant location, selection criteria, Selection of processes, plant capacity, Requirements of plant building and its components, Project design, flow diagrams, selection of equipment, process and controls, Objectives and principles of food plant layout. Salient features of processing plants for cereals, pulses, oilseeds, horticultural and vegetable crops, poultry, fish and meat products, milk and milk products. Introduction to Finance, Food Product Marketing, Food Business Analysis and Strategic Planning, Introduction to Marketing, Food Marketing Management, Supply chain management for retail food products, Entrepreneurship development in food industry, SWOT analysis, generation, incubation and commercialization of ideas and innovations, New product development process, Government schemes and incentive for promotion of entrepreneurship, Govt. policy on small and medium scale food processing enterprise, export and import policies relevant to food processing sector, procedure of obtaining license and registration under FSSAI, Cost analysis and preparation of feasibility report.

Practical
Preparation of project report, Preparation of feasibility report, Salient features and layout of pre processing house, Salient features and layout of Milk and Milk product plants, Evaluation of given layout, Salient features, design and layout of modern rice mill. Salient features, design and layout of Bakery and related product plant, Study of different types of records relating to production of a food plant. Study of different types of records relating to finance of a food plant, Study of different types of records relating to marketing of a food business, Brain storming and SWOT analysis to start a food processing business.

Suggested Readings
Factors affecting shelf life of food material during storage. Interactions of spoilage agents with environmental factors as water, oxygen, light, pH, etc. and general principles of control of the spoilage agents; Difference between food infection, food intoxication and allergy. Packaging of foods, requirement, importance and scope, frame work of packaging strategy, environmental considerations, Packaging systems, types: flexible and rigid; retail and bulk; levels of packaging; special solutions and packaging machines, technical packaging systems and data management packaging systems, Different types of packaging materials, their key properties and applications, Metal cans, manufacture of two piece and three piece cans, Plastic packaging, different types of polymers used in food packaging and their barrier properties, manufacture of plastic packaging materials, profile extrusion, blown film/ sheet extrusion, blow molding, extrusion blow molding, injection blow molding, stretch blow molding, injection molding. Glass containers, types of glass used in food packaging, manufacture of glass and glass containers, closures for glass containers. Paper and paper board packaging, paper and paper board manufacture process, modification of barrier properties and characteristics of paper/ boards. Relative advantages and disadvantages of different packaging materials; effect of these materials on packed commodities. Nutritional labelling on packages, CAS and MAP, shrink and cling packaging, vacuum and gas packaging; Active packaging, Smart packaging. Packaging requirement for raw and processed foods, and their selection of packaging materials, Factors affecting the choice of packaging materials, Disposal and recycle of packaging waste, Printing and labelling, Lamination, Package testing: Testing methods for flexible materials, rigid materials and semi rigid materials; Tests for paper (thickness, bursting strength, breaking length, stiffness, tear resistance, folding endurance, ply bond test, surface oil absorption test, etc.), plastic film and laminates (thickness, tensile strength, gloss, haze, burning test to identify polymer, etc.), aluminium foil (thickness, pin holes, etc.), glass containers (visual defects, colour, dimensions, impact strength, etc.), metal containers (pressure test, product compatibility, etc.).

Practical
Identification of different types of packaging materials, Determination of tensile/ compressive strength of given material/package, To perform different destructive and non-destructive tests for glass containers, Vacuum packaging of agricultural produces, Determination of tear strength of paper board, Measurement of thickness of packaging materials, To perform grease- resistance test in plastic pouches, Determination of bursting strength of packaging material, Determination of water-vapour transmission rate, Shrink wrapping of various horticultural produce, Testing of chemical resistance of packaging materials, Determination of drop test of food package and visit to relevant industries.

Suggested Readings
Development of Processed Products 3 (2+1)

Theory
Process design, Process flow chart with mass and energy balance, Unit operations and equipments for processing, New product development, Technology for value added products from cereal, pulses and oil seeds, Milling, puffing, flaking, Roasting, Bakery products, snack food. Extruded products, oil extraction and refining, Technology for value added products from fruits, vegetables and spices, Canned foods, Frozen foods, dried and fried foods, Fruit juices, Sauce, Sugar based confection, Candy, Fermented food product, spice extracts, Technology for animal produce processing , meat, poultry, fish, egg products, Health food, Nutra-ceuticals and functional food, Organic food.

Practical
Process design and process flow chart preparation, preparation of different value added products, Visit to roller wheat flour milling, rice milling, spice grinding mill, milk plant, dal and oil mill, fruit/vegetable processing plants & study of operations and machinery, Process flow diagram and study of various models of the machines used in a sugar mill.

Suggested Readings
Geankoplis C. J. Transport processes and unit operations, Prentice-Hall.

Process Equipment Design 3 (2+1)

Theory
Introduction on process equipment design, Application of design engineering for processing equipments, Design parameters and general design procedure, Material specification, Types of material for process equipments, Design codes, Pressure vessel design, Design of cleaners. Design of tubular heat exchanger, shell and tube heat exchanger and plate heat exchanger, Design of belt conveyer, screw conveyer and bucket elevator, Design of dryers. Design of milling equipments. Optimization of design with respect to process efficiency, energy and cost, Computer Aided Design.

Practical
Design of pressure vessel, cleaners, milling equipments, tubular heat exchanger, shell and tube type heat exchanger, plate heat exchanger, dryer, belt conveyor, bucket elevator, screw conveyor.

Suggested Readings
Mahajani, V. V. and Umarji, S. B., Process equipment design, Macmillan.
Bhattacharyyaa, B. C., Introduction to Chemical Equipment design, CBS Publishers and Distributors.
Geankoplis C. J. Transport processes and unit operations, Prentice-Hall.
Photovoltaic Technology and Systems 3(2+1)

Theory

Practical
Study of V-I characteristics of solar PV system, smart grid technology and application, manufacturing technique of solar array, different DC to DC and DC to AC converter, domestic solar lighting system, various solar module technologies, safe measurement of PV modules electrical characteristics and Commissioning of complete solar PV system.

Suggested Readings
Derrick, Francis and Bokalders, Solar Photo-voltaic Products.

Waste and By-Products Utilization 3 (2+1)

Theory
Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and utilization, Waste treatment and disposal, design, construction, operation and management of institutional community and family size biogas plants, concept of vermin-composting, Pre-treatment of waste: sedimentation, coagulation, flocculation and floatation, Secondary treatments: Biological and chemical oxygen demand for different food plant waste– trickling filters, oxidation ditches, activated sludge process, rotating biological contractors, lagoons, Tertiary treatments: Advanced waste water treatment process-sand, coal and activated carbon filters , phosphorous, sulphur, nitrogen and heavy metals removal, Assessment, treatment and disposal of solid waste; and biogas generation, Effluent treatment plants, Environmental performance of food industry to comply with ISO-14001 standards.

Practical
Determination of temperature, pH, turbidity solids content, BOD and COD of waste water,
Determination of ash content of agricultural wastes and determination of un-burnt carbon in ash, Study about briquetting of agricultural residues, Estimation of excess air for better combustion of briquettes, Study of extraction of oil from rice bran, Study on bioconversion of agricultural wastes, Recovery of germ and germ oil from by-products of cereals, Visit to various industries using waste and food by-products.

Suggested Readings

Artificial Intelligence 3(3+0)

Theory

Suggested Readings

Mechatronics 3(2+1)

Theory
Definition of mechatronics, measurement system, control systems, microprocessor based

Practical
Selection of sensor for a particular application from Catalogue/Internet. Design a mechatronics product/system and incorporate application of mechatronics for enhancing product values. To study the hardware and software of mechatronics kit. To move a table in X-direction within the range of proximity sensors using Control-X software. To run a motor with PLC. To run a conveyor with computer. To study the movement of actuating cylinders and sensors.

Suggested Readings
Mahind, A.P. Introduction to Digital Computer Electronics. TMH.
Craig, J.J. Introduction to Robotics. Pearson