Baba Sahab Dr. Bhim Rao Ambedkar
College of Agricultural Engineering & Technology
Chandra Shekhar Azad University of Agriculture & Technology
Kanpur, (Etawah Campus)
Etawah Distt. 206001

Syllabus For
M. Tech. (Mechanical Engineering)

(Effective from the Session: 2017-18)
COURSE STRUCTURE FOR
M. TECH. (MECHANICAL ENGINEERING)
(EFFECTIVE FROM THE SESSION: 2017-18)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the subjects</th>
<th>Course No.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core courses: Total 12 credits, 2 courses in first semester and one course in II and III semester.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CAD/CAM</td>
<td>MEN 501</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Operations Research</td>
<td>MEN 502</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Computer Integrated Manufacturing (CIM)</td>
<td>MEN 509</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Turbo Machines</td>
<td>MEN 519</td>
<td>3</td>
</tr>
<tr>
<td>Major courses (Departmental electives): Total 12 credits, two courses in II semester and one course in I and III semester.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Advanced Heat & Mass Transfer</td>
<td>MEN 505</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Renewable Energy System</td>
<td>MEN 506</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Reliability, Maintenance Management & Safety</td>
<td>MEN 507</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Management Information System</td>
<td>MEN 508</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Mechanical Vibrations</td>
<td>MEN 511</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Advanced I.C. Engines</td>
<td>MEN 512</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Fracture Mechanics</td>
<td>MEN 513</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Gas Turbines & Compressors</td>
<td>MEN 514</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Industrial Automation And Robotics</td>
<td>MEN 515</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Advanced Welding Technology</td>
<td>MEN 516</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Computational Fluid Dynamics</td>
<td>MEN 517</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Mechanical Design</td>
<td>MEN 518</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Flexible Manufacturing System</td>
<td>MEN 521</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>Machine Vision</td>
<td>MEN 522</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Additive Manufacturing and Tooling</td>
<td>MEN 523</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Modern Manufacturing Process</td>
<td>MEN 524</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>Advance Mechanics of Solids</td>
<td>MEN 525</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>Total quality management</td>
<td>MEN 526</td>
<td>3</td>
</tr>
<tr>
<td>Supporting Courses: Total 12 credits, 2 courses in first semester and one course in II and III semester.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Simulation, Modeling & Analysis</td>
<td>MEN 503</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Research Process & Methodology</td>
<td>MEN 504</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Optimization Techniques & Design of Experiments</td>
<td>MEN 510</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Advanced Finite Element Analysis</td>
<td>MEN 520</td>
<td>3</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Seminar</td>
<td>MEN 591</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Thesis</td>
<td>MEN 599</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Thesis (Final)</td>
<td>MEN 599</td>
<td>15</td>
</tr>
</tbody>
</table>

Non Credit courses: One course of 01 credit each in I, II and III semester

COMPULSORY NON-CREDIT COURSES
(Compulsory for Master's programme in all disciplines)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGS 501</td>
<td>Library and information services</td>
<td>(0+1)</td>
</tr>
<tr>
<td>PGS 502</td>
<td>Technical writing and communications skills</td>
<td>(0+1)</td>
</tr>
<tr>
<td>PCS 503</td>
<td>Intellectual property and its management in agriculture</td>
<td>(1+0)</td>
</tr>
<tr>
<td>PGS 504</td>
<td>Basic concepts in laboratory techniques</td>
<td>(0+1)</td>
</tr>
<tr>
<td>PGS 505</td>
<td>Agricultural research, research ethics & rural development programmes</td>
<td>(1+0)</td>
</tr>
<tr>
<td>PGS 506</td>
<td>Disaster management</td>
<td>(1+0)</td>
</tr>
</tbody>
</table>
Semester - I

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MEN 501</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>MEN 502</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>MEN 503</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>MEN 504</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>MEN 505/</td>
<td></td>
<td>Any one</td>
<td>Departmental Elective</td>
</tr>
<tr>
<td>MEN 506/</td>
<td>Advanced Heat & Mass Transfer/ Renewable Energy System/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 507/</td>
<td>Reliability, Maintenance Management & Safety/ Management Information System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 508</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PGS 502/</td>
<td></td>
<td>Any one</td>
<td>1(NC)</td>
</tr>
<tr>
<td>PGS 506</td>
<td>Technical writing and communications skills Disaster management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | | | 15 |

Semester – II

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MEN 509</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>MEN 510</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>MEN 511/</td>
<td></td>
<td>Any one</td>
<td>Departmental Elective</td>
</tr>
<tr>
<td>MEN 512/</td>
<td>Advanced I.C. Engines / Fracture Mechanics/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 513/</td>
<td>Fracture Mechanics/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 514</td>
<td>Gas Turbines & Compressors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MEN 515/</td>
<td></td>
<td>Any one</td>
<td>Departmental Elective</td>
</tr>
<tr>
<td>MEN 516/</td>
<td>Industrial Automation And Robotics/ Advanced Welding Technology/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 517/</td>
<td>Computational Fluid Dynamics/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 518</td>
<td>Advanced Mechanical Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PGS 501/</td>
<td></td>
<td>Any one</td>
<td>1(NC)</td>
</tr>
<tr>
<td>PGS 505</td>
<td>Library and information services or Agricultural research, research ethics & rural development programmes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total | | | 12 |

Semester – III

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MEN 519</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>MEN 520</td>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>MEN 521/</td>
<td></td>
<td>Any one</td>
<td>Departmental Elective</td>
</tr>
<tr>
<td>MEN 522/</td>
<td>Flexible Manufacturing System/ Machine Vision/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 523/</td>
<td>Additive Manufacturing and Tooling/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 524/</td>
<td>Modern Manufacturing Process /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 525/</td>
<td>Advance Mechanics of Solids /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEN 526</td>
<td>Total Quality Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MEN 527</td>
<td></td>
<td>NC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PGS 503/</td>
<td></td>
<td>Any one</td>
<td>1(NC)</td>
</tr>
<tr>
<td>PGS 504</td>
<td>Intellectual property and its management in agriculture Basic concepts in laboratory techniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MEN 591</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MEN 599</td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Total | | | 15 |

Semester – IV

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Name of the Subject</th>
<th>Periods</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MEN 599</td>
<td></td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Total | | | 15 |
CAD/CAM

MEN 501
3(3+0)

Mathematical Elements, CAD, Solid modeling methods, Database structures for CAD, CSG formulation, B-rep and wire frame methods, Intersection surface generation methods, Feature based modeling systems, Surface modeling, B-splines, Coons and Bezier surfaces, NURBS and surface patches, fitting surfaces for arbitrary digested points, Offset surfaces, Fillet surfaces, Sewn surfaces, Features recognition from the databases, IGES, STEP, PDES, and DXF data exchange formats, Graphic standards for CAD/CAM such as GKS, PHIGS and VDI.

Concurrent engineering integration of manufacturing principles and analytical principles in design, Manufacturing information generation from CAD data, Planar sectioning, Penalty functions, cavity milling, Optimization of cutter path, Effect of tool profile geometry, Methods for multi-axis machining, Methods for software design for CAD/CAM system, use of software libraries, Development of software package for a specific problem as part of course using software libraries, Introduction to automation, CAM/CIM, Part programming, Interpolator & Control.

Books:
2. CAD/CAM Theory and Practice Ibrahim Zeid & R Sivasubramanian Tata McGraw-Hill
4. Computer Aided Engineering & Design Jim Browne New ATC International
5. The Engineering Database D.N. Chorafas and S.J. Legg Butterworths
7. CAD/CAM H P Groover and E W Zimmers Prentice Hall

OPERATIONS RESEARCH

MEN 502
3(2+1)

Introduction: definition and scope of OR; Techniques and tools; Model formulation; general methods for solution; Classification of optimization problems; Optimization techniques.

Linear Optimization Models: Complex and revised simplex algorithms; Duality theorems, sensitivity analysis; Assignment, transportation and transshipment models; Traveling salesman problem as an Assignment problem; Integer and parametric programming; Goal programming.

Game Problems: Mini-max criterion and optimal strategy; Two person zero sum game; Games by simplex dominance rules.
Waiting Line Problems: Classification of queuing situations; Kendall's notation, Poisson arrival with exponential or Erlang service time distribution; Finite and infinite queues; Optimal service rates; Application of queuing theory to industrial problems.

Dynamic Programming: Characteristic of dynamic programming problems (DPPs); Bellman's principle of optimality; Problems with finite number of stages; Use of simplex algorithm for solving DPPs.

Non-linear Programming: One dimensional minimization methods; unconstrained optimization techniques; Optimization techniques characteristics of a constrained problem; Indirect methods; Search and gradient methods.

Practicals
1. Using queuing theory method to solve a given facility design problem.
2. Writing a program to solve a sequencing problem.
3. Using Monte Carlo simulation to solve a given problem.
4. Solving a given product mix problem.
5. Optimizing weight of a given truss or any machine element.
6. To optimize operational time by using Genetic Algorithm method.
7. To optimize system reliability by using simulated annealing method.
10. Optimization of life cycle costing

Books:

SIMULATION, MODELLING & ANALYSIS

MEN 503 3(2+1)

Introduction: Simulation: a tool, advantages and disadvantages of simulation, areas of application, systems and system environment, components of a system, discrete and continuous systems, discrete event system simulation.

General Principles: Concepts in discrete event simulation, time advance algorithm, manual simulation using event scheduling, basis properties and operations.

Models In Simulation: Terminology and concepts, statistical models: queuing systems; inventory systems; reliability and maintainability, limited data, discrete distributions: Bernoulli distribution; Binomial distribution; Geometric distribution, continuous distribution: Uniform distribution; Exponential distribution; Gamma distribution; Normal distribution; Weibull distribution; Triangular Distribution; Lognormal distribution, poisson process,
Queuing Models: Characteristics of queuing systems, the calling population, system capacity, arrival process, service mechanism, queuing notations, long run measures of performance of queuing systems, server utilization in $G/G/1/\infty/\infty$ queues, server utilization in $G/G/C/\infty/\infty$ queues, server utilization and system performance, costs in queuing problems, Larkovian models.

Random Number Generation: Properties of random numbers, Pseudo random numbers, techniques of generating random numbers, tests of random numbers.

Random Variate Generation: Inverse transform technique, Direct transformation for the Normal and Lognormal distribution, Convolution Method, Acceptance rejection technique.

Input Modeling And Validation: Steps in the development of model, data collection, Distribution identification, Parameter estimation, Goodness of Fit Tests, selecting input models without data, verification and validation of simulation models.

Practicals
1. Study of simulation software Like ARENA, MATLAB.
2. Simulation of translational and rotational mechanical systems
3. Simulation of Queuing systems
4. Simulation of Manufacturing System
5. Generation of Random number
6. Modeling and Analysis of Dynamic Systems
7. Simulation mass spring damper system
8. Simulation of hydraulic and pneumatic systems.
9. Simulation of Job shop with material handling and Flexible manufacturing systems
10. Simulation of Service Operations

Books:
2. Simulation Model Design& execution by Fishwich, Prentice Hall.
3. Discrete event system simulation by Banks, Carson, Nelson and Nicol.

RESEARCH PROCESS AND METHODOLOGY

MEN 504

3(3+0)

Unit 1: Introduction to Research and Problem Definition
Meaning, Objective and importance of research, Types of research, steps involved in research, defining research problem

Unit 2: Research Design
Research design, Methods of research design, research process and steps involved, Literature Survey

Unit 3: Data Collection
Classification of Data, Methods of Data Collection, Sampling, Sampling techniques procedure and methods, Ethical considerations in research

Unit 4: Data Analysis and interpretation
Data analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis, Hypothesis testing, Data processing software (e.g. SPSS etc.), statistical inference, Interpretation of results
Unit 5: Technical Writing and reporting of research

Types of research report: Dissertation and Thesis, research paper, review article, short communication, conference presentation etc., Referencing and referencing styles, Research Journals, Indexing and citation of Journals, Intellectual property, Plagiarism

Text Books:

ADVANCED HEAT & MASS TRANSFER

MEN 505 3(3+0)

Review: Reviews of basic laws of Conduction, Convection and Radiation

Conduction: One dimensional steady state conduction with variable thermal conductivity and with internal distributed heat source, Local heat source in non-adiabatic plate, Thermocouple conduction error, Extended Surfaces-Review, Optimum fin of rectangular profile, straight fins of triangular and parabolic profiles, Optimum profile, Circumferential fin of rectangular profile, spines, design considerations. 2D steady state conduction, semi-infinite and finite flat plates, Temperature fields in finite cylinders and in infinite semi -cylinders, spherical shells, Graphical method, relaxation technique. Unsteady state conduction, Sudden changes in the surface temperatures of infinite plates, cylinders and spheres using Groeber’s and Heisler charts for plates, cylinders and spheres suddenly immersed in fluids.

Convection: Heat transfer in laminar flow, free convection between parallel plates, Forced internal flow through circular tubes, Fully developed flow, Velocity and thermal entry length, solutions with constant wall temperature and with constant heat flux, Forced external flow over a flat plate, two-dimensional velocity and temperature boundary layer equations, Karman Pohlhausen approximate integral method. Heat transfer in turbulent flow, Eddy heat diffusivity, Reynold’s analogy between skin friction and heat transfer, Prandtl-Taylor, Von Karman and Martineli’s analogies, Turbulent flow through circular tubes.

REFERENCES:
1. Principals of Heat Transfer/Frank Kreith/Cengage Learning
3. Heat Transfer/RK Rajput/S.Chand
4. Introduction to Heat Transfer/SK Som PHI
5. Engineering Heat & Mass Transfer/Mahesh Rathore/Lakshmi Publications
6. Heat Transfer / Necati Ozisik / TMH
RENEWABLE ENERGY SYSTEM

INTRODUCTION: Energy and Development; Energy demand and availability; Energy crisis; Conventional and Nonconventional energy; Renewable and Non-renewable energy resources; Environmental impacts of conventional energy usage; Basic concepts of heat and fluid flow useful for energy systems.

SOLAR ENERGY SYSTEMS: Solar radiations data; Solar energy collection, Storage and utilization; Solar water heating; air heating; Power generation; Refrigeration and Air-conditioning; Solar Energy system Economics.

MICRO AND SMALL HYDRO ENERGY SYSTEMS: Resource assessment of micro and small hydro power; Micro, mini and small hydro power systems; Economics; Pump and turbine; Special engines for low heads; Velocity head turbines; Hydrams; Water mill; Tidal power.

BIO MASS ENERGY SYSTEMS: Availability of bio mass-agro, forest, animal, municipal and other residues; Bio mass conversion technologies; Cooking fuels; Biogas; producer gas; Power alcohol from biomass; Power generation; Internal engine modifications and performance; system economics.

WIND ENERGY SYSTEMS: Wind data; Horizontal and vertical axis wind mills; Wind farms; Economics of wind energy.

INTEGRATED ENERGY SYSTEMS: Concept of integration of conventional and non-conventional energy resources and systems; Integrated energy system design and economics.

BOOKS:
1. Energy Efficient Buildings in India Mili Majumdar Tata Energy Research Institute
2. Understanding Renewable Energy Systems Volker Quaschning -
4. Renewable Energy Resources John Twidell Taylor and Francis
5. Renewable Energy Sources and Their Environmental Impact Abbasi & Abbasi Prentice Hall of India

RELIABILITY, MAINTENANCE MANAGEMENT & SAFETY

MAINTAINABILITY, AVAILABILITY & FAILURE ANALYSIS: Maintainability & Availability – Introduction, formulae, Techniques available to improve maintainability & availability, trade off among reliability, maintainability & availability, simple problems, Defect generation – Types of failures, defects reporting and recording. Defect analysis, Failure analysis, Equipment down time analysis, Breakdown analysis, TA, FMEA, FMECA.

MAINTENANCE PLANNING AND REPLACEMENT: Maintenance planning – Overhaul and repair; Meaning and difference, Optimal overhaul/Repair/Replace maintenance policy for equipment subject to breakdown, Replacement decisions – Optimal interval between preventive replacements of equipment subject to breakdown, group replacement.
Maintenance Systems: Fixed time maintenance, Condition based maintenance, Operate to failure, Opportunity maintenance, design out maintenance, Total productive maintenance, Inspection decision – Optimal inspection frequency, non-destructive inspection, PERT & CPM in maintenance, Concept of terrrotechnology.

Condition Monitoring: Techniques-visual monitoring, temperature monitoring, vibration monitoring, lubricant monitoring, Crack monitoring, Thickness monitoring, Noise and sound monitoring, Condition monitoring of hydraulic system, Machine diagnostics - Objectives, Monitoring strategies, Examples of monitoring and diagnosis, Control structure for machine diagnosis.

Safety Aspects: Importance of safety, Factors affecting safety, Safety aspects of site and plant, Hazards of commercial chemical reaction and operation, Instruments for safe operation, Safety education and training, Personnel safety, Disaster planning and measuring safety effectiveness, Future trends in industrial safety.

Books:
3. Failure Diagnosis and Performance Monitoring L.F. Pau Marcel Dekker
7. Engineering Maintainability: How to Design for Reliability and Easy Maintenance B.S. Dhillon Prentice Hall of India

MANAGEMENT INFORMATION SYSTEMS

MEN 508

3(3+0)

Introduction; Meaning and definition of management information systems (MIS); Systems approach; Role of MIS in facing increasing complexity in business and management.

Conceptual information systems design; defining the problem; setting system objectives; Establishing system constraints; Determining information needs; Determining information sources; Developing alternative conceptual designs; Documenting the conceptual designs.

Detailing information systems design; Informing and involving the organization; Project management of MIS; Identifying dominant and tradeoff criteria; Subsystem definition and sources.

Evaluation of information systems; Basic information systems; Financial information systems; Production and operations information systems; Marketing information systems; Personal information system etc.

Information systems for decision making; Programmed and non-programmed decisions; Components of decision support systems, Strategic and project planning.

Enterprise wise information systems; Integration with ERP systems; Real-time organizations; Integration with external organizations; Virtual organizations; data warehousing; Data mining; OLAP (Online Analytical Processing) Systems, Business analytics. Issues in ethics, crime and security.
Books:
3. Management Information Systems S Sadagopan Prentice Hall of India
5. Management Information Systems M. Jaiswal Oxford University Press

COMPUTER INTEGRATED MANUFACTURING (CIM)

MEN 509

3(2+1)

Introduction to CNC Machine Tools: Development of CNC Technology-Principles and classification of CNC machines, Advantages & economic benefits, Types of control, CNC controllers, Characteristics, Interpolators, Applications, DNC concept.

CNC Programming: Co-ordinate System, Fundamentals of APT programming, Manual part programming-structure of part programme, G & M Codes, developing simple part programmes, Parametric programming, CAM packages for CNC machines-IDEAS, Unigraphics, Pro Engineer, CATIA, ESPIRIT, MasterCAM etc., and use of standard controllers-FANUC, Heidenhain and Sinumeric control system.

Tooling for CNC Machines: Cutting tool materials, Carbide inserts classification; Qualified, semi-qualified and preset tooling, Cooling fed tooling system, Quick change tooling system, Tooling system for machining centre and turning center, tool holders, Tool assemblies, Tool magazines, ATC mechanisms, Tool management.

Robotics and Material Handling Systems: Introduction to robotic technology, and applications, Robot anatomy, material handling function, Types of material handling equipment, Converyer systems, Automated guided vehicle systems, Automated storage/retrieval systems, Work-in-process storage, Interfacing handling and storage with manufacturing.

Computer Integrated Manufacturing: Introduction, Evaluation of CIM, CIM hardware and software, Requirements of computer to be used in CIM system, Database requirements, Concurrent engineering-Principles, design and development environment, advance modeling techniques.

Practicals:
1. 3D Modeling using CAD software.
2. CNC programming on turning.
3. CNC programming on milling.
4. Simulation of CNC programming on CAM Software
5. Study and demonstration on Robots.
7. Study of computer controlled business functions.
8. Study of interfacing requirements in CIMS.
10. Design/ Thermal Analysis by CAD Software.
Books:
1. Computer Numerical Control Machines P. Radahkrishnan New Central Book Agency
2. CNC Machines M.S. Sehrawat and J.S. Narang Dhanpat Rai and Co.
5. Computer Integrated Manufacturing, Paul Ranky Prentice Hall of India

OPTIMIZATION TECHNIQUES & DESIGN OF EXPERIMENTS

MEN 510

SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods, Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods.

GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P

DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

LINEAR PROGRAMMING: Formulation – Sensitivity analysis. Change in the constraints, cost coefficients, coefficients of the constraints, addition and deletion of variable, constraints.

INTEGER PROGRAMMING: Introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method.

STOCHASTIC PROGRAMMING: Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:
1. Optimization theory & Applications/ S.S Rao/ New Age International
2. Introductory to operation research/Kasan & Kumar/Springar
4. Operation Research/H.A. Taha/TMH

ADVANCED MECHANICAL VIBRATIONS

MEN 511

Introduction: Characterization of engineering vibration problems, Review of single degree freedom systems with free, damped and forced vibrations

Continuous systems: Forced vibration of systems governed by wave equation, Free and forced vibrations of beams/ bars

Transient Vibrations: Response to an impulsive, step and pulse input, Shock spectrum

Non-linear Vibrations: Non-linear systems, Undamped and forced vibration with non-linear spring forces, Self-excited vibrations.

Books:
2. Mechanical Vibrations G.K. Groover Nem Chand & Brothers
3. Mechanical Vibration Practice V. Ramamurti Narosa Publications
4. Mechanical Vibrations V.P. Singh Dhanpat Rai & sons
5. Textbook of Mechanical Vibrations R.V. Dukkipati & J. Srinivas Prentice Hall of India

ADVANCED I.C. ENGINES

MEN 512

Books:
1. Internal Combustion Engines: Applied Thermo sciences Ferguson Colin R John Wiley
3. Internal Combustion Engines SK Agrawal New Age international

FRACTURE MECHANICS

MEN 513

Introduction and overview, Concepts of fracture mechanics and strength of materials, Elements of solid mechanics, Elasticity and plasticity, Incremental plasticity and deformation theory.

Plastic crack-tip fields, Mode-I fields and fracture criterion, Engineering approach to plastic fracture, J-integral approaches and numerical concepts, Tearing modulus, Time dependent fracture, non-linear aspects of fatigue crack growth, Theoretical models, Fatigue cracks in welds, standard tests and testing procedures.

Books:
3. Advanced Fracture Mechanics Kanninen, Melvin F Popelar, Carl H Oxford University Press

GAS TURBINES & COMPRESSORS

MEN-514 3(3+0)

Gas Turbines: Development, Classification and field applications of gas turbines, Ideal and actual cycles; multi-stage compression; Reheating, Regeneration, Combined and Cogeneration, Energy transfer between fluid and rotor; Axis symmetric flow in compressors and turbines.

Centrifugal Compressor: Principles of operation; Compressor losses; Adiabatic efficiency; Slip factor; Pressure coefficient; Power unit; Design consideration for impeller and diffusion systems; Performance characteristics.

Axial Flow Compressors: Elementary theory; Vortex theory; Degree of reaction; Simple design; Elementary airfoil theory; Isolated airfoil and cascade theory; 3D flow; Stages; stage efficiency and overall efficiency; Performance characteristics.

Turbines: Axial flow and radial flow turbines; Impulse and reaction turbines; Fundamental relations and velocity triangles; Elementary vortex theory; Limiting factors in turbine design application of Airfoil theory to the study of flow through turbine blades; Aerodynamic and thermodynamic design considerations; Blade materials; Blade attachments and blade cooling.

Gas Turbine Power Plants: Fuel feed systems; Combustion systems-design considerations and flame stabilization; regenerator types and design; Gas turbine power; Plant performance and matching; Applications

Books:
1. Steam and Gas Turbine by R Yadav, Standard Publishers
2. Gas Turbine Engineering Handbook by Boyce Meherwan P, Gulf Profe
4. Compressor Performance, Aerodynamics for the User by Theodore Gresh

INDUSTRIAL AUTOMATION AND ROBOTICS

MEN 515 3(3+0)

Introduction to Automation: Automation production system, Mechanization and automation, Types of automation, Automation strategies, Mechanical, electrical, hydraulic and Pneumatic automation devices and controls, Economics of automation.
High Volume Manufacturing Automation: Classification and type of automatic transfer machines; Automation in part handling and feeding, Analysis of automated flow lines, design of single model, multimodel and mixed model production lines.

Programmable Manufacturing Automation: CNC machine tools, Machining centers, Programmable robots, Robot time estimation in manufacturing operations.

Assembly Automation: Assembly systems, Automatic transfer, feeding and orienting devices, Flexible assembly systems, Performance evaluation and economics of assembly systems.

Robotics: Review of robotic technology and applications, Laws of robotics, Robot systems and anatomy, Robot classification, End Effectors, Robot kinematics, Object location, Homogeneous transformation, Direct and inverse kinematics, Manipulator motions, Robot drives, actuators and control, Drive systems, Hydraulic, Pneumatic Electrical DC and AC servo motors and stepped motors, Mechanical transmission method-Rotary-to-rotary motion conversion, Robot motion and path planning control and Controllers, Robot sensing, Range sensing, Proximity sensing, touch sensing, Force and torque sensing etc., Robot vision, Image representation, Image recognition approaches.

Books:
1. Automation, Production System & Computer Integrated Manufacturing Groover Prentice Hall India
2. Principles of Automation & Automated Production Process Malov and Ivanov Mir Publication
3. Automation in Production Engineering Oates and Georgy Newness -
4. Stochastic Models of Manufacturing Systems Buzacott & shanty Kumar Prentice Hall India
6. Robotics J.J. Craig Addison-Wesely

ADVANCED WELDING TECHNOLOGY

Welding Metallurgy: Welding as compared with other fabrication processes, Classification of welding processes; Heat affected zone and its characteristics; Effects of alloying elements on weldability, Weldability of steels, stainless steel, cast iron, and aluminum and titanium alloys, Weld testing standards, Hydrogen embrittlement, Lammellar tearing, residual stresses and its measurement, heat transfer and solidification, Analysis of stresses in welded structures, Pre and post welding heat treatments, Metallurgical aspects of joining, Conditions of soldering, Brazing and welding of materials.

Weld Design & Quality Control: Principles of sound weld design, Welding joint design, Welding defects; Testing of weldment, Material joining characteristics, Welding positions, Allowable strength of welds under steady loads, Weld throat thickness; Weld quality, Discontinuities in welds, their causes and remedies and quality conflicts.
Modern Trends in Welding: Friction welding, Explosive welding, Diffusion bonding, High frequency induction welding, Ultrasonic welding, Electron beam welding, Plasma arc welding, Laser welding.

Mechanisation in Welding: Mechanization of flat/circular joints, Thin/thick sheets (resistance/arc weld), Mechanisation of I beams (arc weld), Longitudinal circumferential SA welding (roller blocks, column booms, flux supports), Circular/spherical welding joints (rotating tables positioners), Manufacture of welding longitudinal welded pipes by induction, TIG, Plasma and SA welding of spiral welded pipes.

Robotics in Welding: Robot design and applications in welding, Programming of welding robots, tolerances for assemblies for robot welding, New generation of welding robots, Self alignment by current arc variation, Robots for car body welding, Microelectronic welding and soldering, Efficiency of robotics in welding.

Books:
1. Advanced Welding Processes Nikodaco & Shansky MIR Publications
2. Welding Technology and Design VM Radhakrishnan New Age International
3. Source Book of Innovative welding Processes M.M. Schwa Americal Society of Metals (Ohio)
5. Manufacturing Technology (Foundry, Forming and Welding) P.N. Rao Tata McGraw Hill

COMPUTATIONAL FLUID DYNAMICS

MEN 517 3(3+0)

Introduction, Conservation equation, Mass Momentum and Energy equations, Convective form of the equation and general description.

Clarification into various types of equation, Parabolic, Elliptic, Boundary and initial conditions, Overview of numerical methods.

Finite difference methods; Different means for formulating finite difference equations, Taylor series expansion, Integration over element, Local function method; Finite volume methods; Central, upwind and hybrid formulations and comparison for convection-diffusion problem, Treatment of boundary conditions; Boundary layer treatment; Variable property, Interface and free surface treatment, Accuracy of F.D. method.

Solution of finite difference equations; Iterative methods; Matrix inversion methods, ADI method, Operator splitting, Fast Fourier Transform applications.

Phase change problems, Rayleigh-Ritz, Galerkin and Least square methods; Interpolation functions, One and two dimensional elements, Applications. Phase change problems; Different approaches for moving boundary; Variable time step method, Enthalpy method.

Books:
1. Computational Methods for Fluid Dynamics Ferziger Joel H Springer-Verlog
4. Middleman Stanley John Wiley
ADVANCED MECHANICAL DESIGN

Introduction: Concepts related to kinematics and mechanisms, Degrees of freedom, Grubler’s Criteria, Transmission and Deviation angles, Mechanical advantage.

Kinematic Synthesis: Type, number and dimensional synthesis, Spacing of accuracy points, Chebyshev polynomials, Motion and function generation, Graphical synthesis with two, three and four prescribed motions and points, The complex number modeling in kinematic synthesis, The Dyad, Standard form, Freudentein’s equation for three point function generation coupler curves, Robert’s law, Cognates of the slider crank chain.

Path Curvature Theory: Fixed and moving centrode, Inflection points and inflection circle circle, Euler’s-savary Equation, Bobillier’s and Hartman construction.

Dynamic Force Analysis: Introduction, Inertia force in linkages, Kineto static analysis by superposition and matrix approach, Time response of mechanisms, Force and moment balancing of linkages.

Spatial Mechanism: Introduction to 3-dimensional mechanisms, Planar Finite, Rigid body and spatial transformation, Analysis of spatial mechanisms.

Books:
1. Fundamentals of applied Kinematics D.C. Tao Addison Wesley

FUNDAMENTALS OF TURBO MACHINES: Classifications, Applications, Thermodynamic analysis, Isentropic flow. Energy transfer. Efficiencies, Static and Stagnation conditions, Continuity equations, Euler's flow through variable cross sectional areas, Unsteady flow in turbo machines

STEAM NOZZLES: Convergent and Convergent-Divergent nozzles, Energy Balance, Effect of back pressure of analysis. Designs of nozzles.

Steam Turbines: Impulse turbines, Compounding, Work done and Velocity triangle, Efficiencies, Constant reactions, Blading, Design of blade passages, Angle and height, Secondary flow. Leakage losses, Thermodynamic analysis of steam turbines.

GAS DYNAMICS: Fundamental thermodynamic concepts, isentropic conditions, mach numbers and area, Velocity relations, Dynamic Pressure, Normal shock relation for perfect gas. Super sonic flow, oblique shock waves. Normal shock recoveries, Detached shocks, Aerofoil theory.

Centrifugal compressor: Types, Velocity triangles and efficiencies, Blade passage design, Diffuser and pressure recovery. Slip factor, Stanitz and Stodolas formula's, Effect of inlet mach numbers, Pre whirl, Performance

AXIAL FLOW COMPRESSORS: Flow Analysis, Work and velocity triangles, Efficiencies, Thermodynamic analysis. Stage pressure rise, Dgree of reaction, Stage Loading, General design, Effect of velocity, Incidence, Performance

Cascade Analysis: Geometrical and terminology. Blade force, Efficiencies, Losses, Free end force, Vortex Blades.

REFERENCES:
1. Principles of Turbo Machines/DG Shepherd / Macmillan
2. Fundamentals of Turbomachinery/William W Perg/John Wiley & Sons
3. Element of Gas Dynamics/Yahya/TMH
5. Turbines, Pumps, Compressors/Yahya/TMH
7. Theory and practice of Steam Turbines/ WJ Kearton/ELBS Pitman/London

ADVANCED FINITE ELEMENT ANALYSIS

MEN 520 3(3+0)

Introduction to Finite Difference Method and Finite Element Method, Advantages and disadvantages, Mathematical formulation of FEM, Variational and Weighted residual approaches, Shape functions, Natural co-ordinate system, Element and global stiffness matrix, Boundary conditions, Errors, Convergence and patch test, Higher order elements.

Application to plane stress and plane strain problems, Axi-symmetric and 3D bodies, Plate bending problems with isotropic and anisotropic materials, Structural stability, Other applications e.g., Heat conduction and fluid flow problems.

Idealisation of stiffness of beam elements in beam-slab problems, Applications of the method to materially non-linear problems, Organisation of the Finite Element programmes, Data preparation and mesh generation through computer graphics, Numerical techniques, 3D problems, FEM an essential component of CAD, Use of commercial FEM packages, Finite element solution of existing complete designs, Comparison with conventional analysis.

Books:
6. Introduction to Finite Elements in Engineering T.R Chandragupta and A.D. Belegundu Prentice Hall India
7. Finite Element and Approximation O.C. Zenkiewicz & Morgan
FLEXIBLE MANUFACTURING SYSTEM

MEN 521 3(3+0)

Introduction: FMS definition and classification of manufacturing systems, Automated production cycle, Need of flexibility, Concept of flexibility, Types of flexibilities and its measurement.

FMS Equipment: Why FMS, Factors responsible for the growth of FMS, FMS types and applications, Economic justification for FMS, Functional requirements for FMS equipments, FMS processing and QA equipment, e.g., turning and machining centers, Co-ordinate measuring machines, Cleaning and deburring machines, FMS system support equipment, Automated material handling and storage equipment, cutting tool and tool management, Work holding considerations, Fixture considerations in FMS environment.

Group Technology: GT concepts, Advantages of GT, Part family formation-coding and classification systems; Partmachine group analysis, Methods for cell formation, Use of different algorithms, mathematical programming and graph theoretic model approach for part grouping, Cellular vs FMS production. *FMS related problem and Solution Methodology:* · FMS design problems: Part assignment, Machine selection, Storage system selection, Selection of pallets and fixtures, Selection of computer hardware and software, designing for layout integration of machine storage, Material handling System and computer system, Communication networks.
 · FMS planning problems: Strategic planning, Part type selection, Machine grouping, production ratio and resource allocation, Machine loading problems.
 · Operational & Control problems: Part scheduling, Machines robots & AGVS, Process monitoring & control.
 · FMS Implementation: Objectives, acceptance testing, Performance goals and expectation maintenance concerns.

Books:
1. Automation, Production System & Computer Integrated Manufacturing Groover Englewood
2. Design and Operation of SMS Rankey IFS
3. Flexible Manufacturing System Wernecks Spring-Verlag
4. FMS in Practice Bonctto Northox Ford
5. Flexible Manufacturing Cells and systems W.W. Luggen Prentice Hall India

MACHINE VISION

MEN 522 3(3+0)

Image capture and digitization; Image transforms; Digital Fourier transform; Fast Fourier transform; Other transforms; Convolution; Image enhancement; Spatial methods; Frequency domain methods; Image restoration.

Geometric transformation; Image compression; error free and lossy compression; Edge detection; Hough transform; Region based segmentation; image feature / region representation and descriptors; Morphological operators. Feature based matching; Baye’s classification; Low level vision; Introduction to stereopsis, Shape from shading; Optical flow; Rule based picture segmentation; tutorial exercise will emphasize development and evaluation of image algorithms.
Books:
2. Digital Image Processing Kenneth & Castleman Prentice Hall India
3. Digital Image Processing Gonzalez RC & P Wint Addison Wesley
4. Digital Image Processing & Analysis Chandra and Mazumdar Prentice Hall India

ADDITIVE MANUFACTURING AND TOOLING

MEN 523 3(3+0)

Introduction: Historical developments, Fundamentals of RP Systems and its Classification, Rapid prototyping process chains, 3D modeling and mesh generation, Data conversion and transmission.

RP Systems: Liquid polymer based rapid prototyping systems, Teijin Seikis’ solid form and other similar commercial RP systems, Solid input materials based rapid prototyping systems, laminated object manufacturing (LOM) and fused deposition modelling systems etc., Power based rapid prototyping systems, selective Laser sintering, Soligen Diren’s shell production casting (DSPC), Fraunhofer’s multiphase jet solidification (MJS) and MIT’s 3D printing (3DP) etc.

RP Database: Rapid prototyping data formats, STL format, STL file problems, STL file repair, Network based operations, Digital inspection, Data warehousing and learning from process data.

RP Applications: Development of dies for moulding, RP applications in developing prototypes of products, application in medical fields, Development of bone replacements and tissues, etc., RP materials and their biological acceptability.

Books:
2. Rapid Prototyping: Principles And Applications Kai Chua Chee World Scie
3. Rapid System Prototyping With Fpgas: Accelerating The Design Process R C Cofer Newnes
4. Rapid Prototyping of Digital Systems James O Hamblen Springer

MODERN MANUFACTURING PROCESSES

MEN 524 3(3+0)

Special Casting Processes & Recent Advances in Casting: Shell moulding, precision investment casting, CO₂ moulding, Centrifugal casting, Die and continuous casting, Low pressure die casting, Squeeze casting, Full mould casting process, Layout of mechanized foundry, sand reclamation, Material handling in foundry, Pollution control in foundry, recent trends in casting, Computer aided design of casting.

Books:
2. Metal Cutting Theory and Practice Bhattacharya New Central Book Agency
3. Fundamentals of Metal Cutting and Machine Tools B.L. Juneja and G.S. Sekhon New Age International
4. Principles of Metal Cutting G. Kuppuswamy Universities Press
5. Fundamentals of Machining and Machine Tools D.G. Boothroy and W.A. Knight Marcel Dekker, NY

ADVANCED MECHANICS OF SOLIDS

MEN 525 3(3+0)

Mathematical Preliminaries: Scalars, vectors and matrix variables, index notation and the related rules, Cartesian tensors and their algebra, coordinate transformation, transformation rules for the nth order tensors, elements of tensor calculus and the related theorems (divergence, Stokes’ and Green’s), principal value theorem, eigenvalues and eigenvectors, invariants of a 2nd order tensor.

Kinetics of Deformation: Types of forces (point, surface and body), traction vector, state of stress at a point, Cauchy’s relation and its proof, conservation of linear and angular momentum, stress equilibrium equations, symmetry of stress tensor, stress transformation, principal stresses and the associated planes, 3D Mohr’s circle representation, planes of maximum shear, octahedral planes, hydrostatic and deviatoric stress, first and second Piola-Kirchoff stress tensors and their properties.

Kinematics of Deformation: Material and spatial co-ordinates, Eulerian and Lagrangian description of motion; deformation and displacement gradients, Green-Lagrange and Almansi strain tensor; Cauchy’s small strain tensor and the rotation tensor, geometrical interpretation of strain components and sign convention, principal strains and directions, strain invariants, octahedral strain, maximum shear strain, volumetric strain, strain compatibility equations.
Constitutive Modeling: Thermodynamic principles, first and second law of thermodynamics, Generalized Hooke’s law for isotropic materials, elastic constants and their relations, anisotropic, hyperelastic and viscoelastic material models, strain hardening, constitutive relations for elasto-plastic materials, flow and hardening rules.

Boundary Value Problems in Linear Elasticity: Field equations and boundary conditions, Navier equations, Beltrami-Michell stress compatibility conditions, 2D approximations (plane stress and plane strain) and solution strategies.

Name of Authors/Books/Publisher

TOTAL QUALITY MANAGEMENT

3(3+0)

Introduction and Components of TQM: Concept and Philosophy of TQM, Value and Quality assurance, Total Quality Control, Quality policy, Team-work and participation, Quality cost measurement, Quality Circle, Customer/Supplier integration, Education and training.

Tools and Techniques of TQM: Statistical method in quality control, Process control chart, Acceptance sampling plan, Statistical Productivity control (SPC)

Reliability: Failure analysis, System reliability and redundancy

TQM implementation: Steps in promoting and implementing TQM in manufacturing industries, Industrial Case studies.

ISO 9000 Quality Systems: Concepts, designation Standards, Quality system documentation, Quality manual, Quality procedures and work inspection.

Books:
1. Total Quality Control F. Ammandev Tata McGraw Hill
2. Total Quality Management Besterfield, et. al. Prentice Hall of India
3. Total Quality Management: Text and Cases B. Janakiraman & RK Gopal Prentice Hall of India
4. What is Total Quality Control? K. Ishikawa Prentice hall
5. Total Quality Management: The Route to Improving Performance J.S. Oakland Butterworth Heineman Oxford

COMPULSORY NON-CREDIT COURSES

(Compulsory for Master's programme in all disciplines)

LIBRARY AND INFORMATION SERVICES

1(0+1)

Objective: To equip the library users with skills to trace information from libraries efficiently, to apprise them of information and knowledge resources, to carry out literature survey, to formulate information search strategies, and to use modern tools (Internet, OPAC, search engines etc.) of information search.
Practical: Introduction to library and its services; Role of libraries in education, research and technology transfer; Classification systems and organization of library; Sources of information-Primary Sources, Secondary Sources and Tertiary Sources; Intricacies of abstracting and indexing services (Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.); Tracing information from reference sources; Literature survey; Citation techniques/Preparation of bibliography; Use of CD-ROM Databases, Online Public Access Catalogue and other computerized library services; Use of Internet including search engines and its resources; e-resources access methods.

TECHNICAL WRITING AND COMMUNICATIONS SKILLS

PGS 502 1(0+1)

Objective: To equip the students/scholars with skills to write dissertations, research papers, etc. To equip the students/scholars with skills to communicate and articulate in English (verbal as well as writing).

Practical

Technical Writing - Various forms of scientific writings- theses, technical papers, reviews, manuals, etc; Various parts of thesis and research communications (title page, authorship contents page, preface, introduction, review of literature, material and methods, experimental results and discussion); Writing of abstracts, summaries, précis, citations etc.; commonly used abbreviations in the theses and research communications; illustrations, photographs and drawings with suitable captions; pagination, numbering of tables and illustrations; Writing of numbers and dates in scientific write-ups; Editing and proof-reading; Writing of a review article.

Communication Skills - Grammar (Tenses, parts of speech, clauses, punctuation marks); Error analysis (Common errors); Concord; Collocation; Phonetic symbols and transcription; Accentual pattern: Weak forms in connected speech: Participation in group discussion: Facing an interview; presentation of scientific papers.

Suggested Readings

INTELECTUAL PROPERTY AND ITS MANAGEMENT IN AGRICULTURE

PGS 503 1(1+0)

Objective: The main objective of this course is to equip students and stakeholders with knowledge of intellectual property rights (IPR) related protection systems, their significance and use of IPR as a tool for wealth and value creation in a knowledge-based economy. Theory Historical perspectives and need for the introduction of Intellectual Property Right regime; TRIPs and various provisions in TRIPS Agreement; Intellectual Property and intellectual Property Rights (IPR), benefits of securing IPRs; Indian Legislations for the protection of various types of Intellectual Properties; Fundamentals of patents, copyrights, geographical indications, designs and layout, trade secrets and traditional knowledge, trademarks, protection of plant varieties and farmers' rights and biodiversity protection; Protectable subject matters, protection in biotechnology, protection of other biological materials, ownership and period of protection; National Biodiversity protection initiatives; Convention on
Biological Diversity; International Treaty on Plant Genetic resources for Food and Agriculture; Licensing of technologies, Material transfer agreements, Research collaboration Agreement, License Agreement.

Suggested Readings

BASIC CONCEPTS IN LABORATORY TECHNIQUES

PGS 504
Objective: To acquaint the students about the basics of commonly used techniques in laboratory.
Practical: Safety measures while in Lab; Handling of chemical substances; Use of burettes, pipettes, measuring cylinders, flasks, separatory funnel, condensers, micropipettes and vaccupets; washing, drying and sterilization of glassware; Drying of solvents/chemicals. Weighing and preparation of solutions of different strengths and their dilution; Handling techniques of solutions; Preparation of different agro-chemical doses in field and pot applications; Preparation of solutions of acids; Neutralisation of acid and bases; Preparation of buffers of different strengths and pH values. Use and handling of microscope, laminar flow, vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sandbath, waterbath, oilbath; Electric wiring and earthing. Preparation of media and methods of sterilization; Seed viability testing, testing of pollen viability; Tissue culture of crop plants; Description of flowering plants in botanical terms in relation to taxonomy.

Suggested Readings

AGRICULTURAL RESEARCH, RESEARCH ETHICS & RURAL DEVELOPMENT PROGRAMMES

PGS 505
Objective: To enlighten the students about the organization and functioning of agricultural research systems at national and international levels, research ethics, and rural development programmes and policies of Government.
Theory: History of agriculture in brief; Global agricultural research system: need, scope, opportunities; Role in promoting food security, reducing poverty and protecting the environment; National Agricultural Research Systems (NARS) and Regional Agricultural Research Institutions; Consultative Group on International Agricultural Research (CGIAR): International Agricultural Research Centres (IARC), partnership with NARS, role as a partner in the global agricultural research system, strengthening capacities at national and regional levels; International fellowships for scientific mobility. Research ethics: research integrity, research safety in laboratories, welfare of animals used in research, computer ethics, standards and problems in research ethics. Concept and connotations of rural development, rural development policies and strategies. Rural development programmes: Community Development Programme, Intensive Agricultural District Programme, Special group -
Suggested Readings

DISASTER MANAGEMENT

Objective: To introduce learners to the key concepts and practices of natural disaster management; to equip them to conduct thorough assessment of hazards, and risks vulnerability; and capacity building.

Disaster Management- Efforts to mitigate natural disasters at national and global levels. International Strategy for Disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, Community-based organizations, and media. Central, State, District and local Administration; Armed forces in Disaster response; Disaster response: Police and other organizations.

Suggested Readings
- Sharma VK. 2001. Disaster Management. National Centre for Disaster Management, India