TECHNIQUES IN BIOCHEMISTRY BIOCHEM-505 4 (2+2)

BLOCK: 2 UNIT-1 PRINCIPLE & APPLICATION OF OF IR AND FTIR SPECTROSCOPY

Dr. ALKA KATIYAR Teaching Associate

DEPARTMENT OF AGRICULTURAL BIOCHEMISTRY

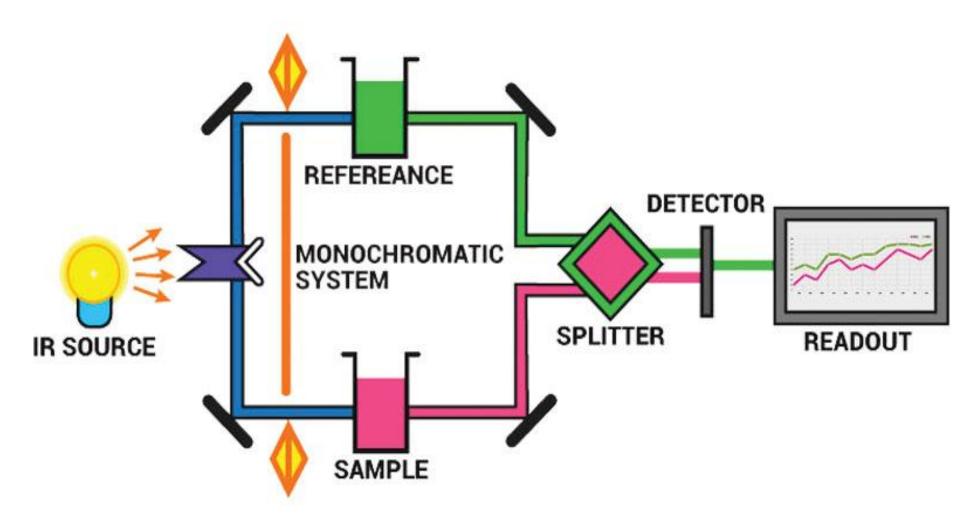
C.S. AZAD UNIVERSITY OF AGRICULTURE & TECHNOLOGY, KANPUR

Block 1: UNIT-1

TOPIC NAME- PRINCIPLE & APPLICATION OF OF IR AND FTIR SPECTROSCOPY LECTURE NO- 8

OBJECTIVE-

- Introduction of Infra Red Spectroscopy
- Principle of IR & FTIR Spectroscopy
- Instrumentation and Application of Infra Red Spectroscopy


INFRA RED (IR) SPECTROSCOPY

- Infrared (IR) spectroscopy or vibrational spectroscopy is an analytical technique that takes advantage of the vibrational transitions of a molecule.
- It is one of the most common and widely used spectroscopic techniques employed mainly by inorganic and organic chemists due to its usefulness in determining structures of compounds and identifying them.
- The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer to produce an infrared spectrum.

Principle of Infrared (IR) Spectroscopy

- Infrared Spectroscopy is the analysis of infrared light interacting with a molecule.
- Infrared spectrometers, similar in principle to other spectrometer, permit chemists to obtain absorption spectra of compounds that are a unique reflection of their molecular structure.
- The fundamental measurement obtained in infrared spectroscopy is an infrared spectrum, which is a plot of measured infrared intensity versus wavelength (or frequency) of light.
- IR Spectroscopy measures the vibrations of atoms, and based on this it is possible to determine the functional groups.
- Generally, stronger bonds and light atoms will vibrate at a high stretching frequency

Working of IR Spectroscopy

Instrumentation of Infrared (IR) Spectroscopy

The main parts of IR spectrometer are as follows:-

1.Radiation source

2.Sample cells and sampling of substances

- **3**.Monochromators
- 4.Detectors

5.Recorder

1.Radiation source

- IR instruments require a source of radiant energy which emit IR radiation which must be steady, intense enough for detection and extend over the desired wavelength.
- Various sources of IR radiations are as follows.
- 1. Nernst glower
- 2. Incandescent lamp
- 3. Mercury arc
- 4. Tungsten lamp
- 5. Glober source
- 6. Nichrome wire

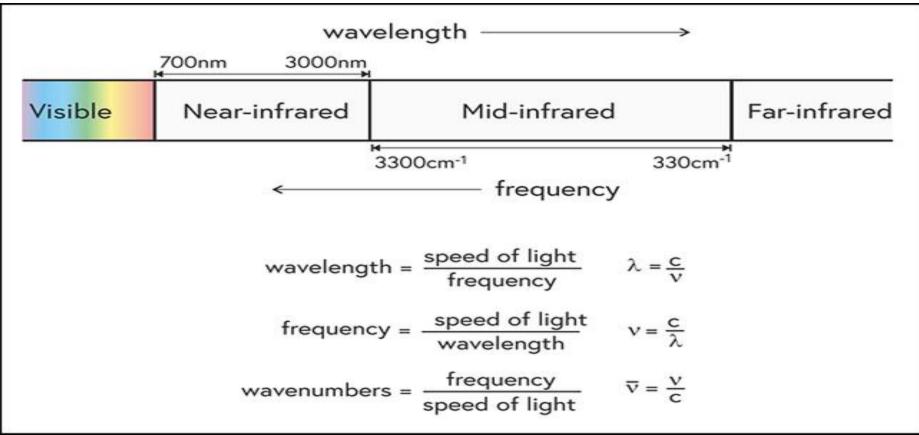
2. Sample cells and sampling of substances

IR spectroscopy has been used for the characterization of solid, liquid or gas samples.

- Solid Various techniques are used for preparing solid samples such as pressed pellet technique, solid run in solution, solid films, mull technique etc.
- Liquid Samples can be held using a liquid sample cell made of alkali halides. Aqueous solvents cannot be used as they will dissolve alkali halides. Only organic solvents like chloroform can be used.
- Gas– Sampling of gas is similar to the sampling of liquids.

3. Monochromators

- Various types of monochromators are used such as prism, gratings and filters.
- Prisms are made of Potassium bromide, Sodium chloride or Caesium iodide.
- Filters are made up of Lithium Fluoride and Diffraction gratings are made up of alkali halides.


4. Detectors

- Detectors are used to measure the intensity of unabsorbed infrared radiation.
- Detectors like thermocouples, Bolometers, thermisters, Golay cell, and pyro-electric detectors are used.

5. Recorders

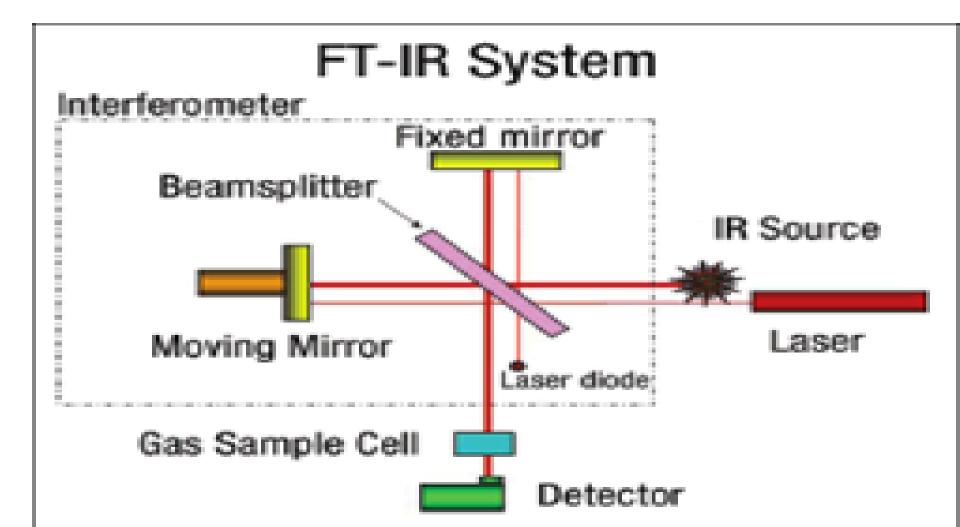
• Recorders are used to record the IR spectrum.

Range of IR Spectroscopy are-

Applications of Infrared (IR) Spectroscopy

It has been of great significance to scientific researchers in many fields such as:

- 1. Protein characterization
- 2. Nanoscale semiconductor analysis and Space exploration.
- 3. Analysis of gaseous, liquid or solid samples
- 4. Identification of compounds
- 5. Quantitative analysis
- 6. Information regarding functional groups of molecules and constitution of molecules can be deduced from IR spectrum
- 7. To know about interaction among molecules


Fourier Transform InfraRed (FTIR)

- FTIR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy.
- In infrared spectroscopy, IR radiation is passed through a sample. Some of the infrared radiation is absorbed by the sample and some of it is passed through (transmitted).
- So, what information can FT-IR provide?
- It can identify unknown materials
- It can determine the quality or consistency of a sample
- It can determine the amount of components in a mixture

Why FTIR is important as compared simple IR?

- Fourier transform infrared spectroscopy is preferred over dispersive as well as filter methods of infrared spectroscopy analysis for several reasons:-
- It is a non-destructive technique.
- It provides a precise measurement method which requires no external calibration.
- It can increase speed, collecting a scan every second.
- It can increase sensitivity one second scans can be co-added together to ratio out random noise.
- It has greater optical output.
- It is mechanically simple with only one moving part.

Working of FTIR-

Application of FTIR Spectroscopy

FTIR applications is extensive. Some of the more common applications are:

- Quality verification of incoming/outgoing materials
- Deformulation of polymers, rubbers, and other materials through thermogravimetric infra-red (TGA-IR) or gas chromatography infra-red (GC-IR) analysis.
- Microanalysis of small sections of materials to identify contaminants
- Analysis of thin films and coatings.
- Monitoring of automotive or smokestack emissions
- Failure analysis

Difference between IR and FTIR Spectroscopy

Sr.no.	Dispersive IR	Fourier Transform IR
1	There are many moving parts resulting in mechanical slippage and wear.	Only the mirror moves during an experiment
2	Calibration against reference spectra is required to measure frequency .	Use of a laser provides high frequency (to 0.01 cm-1).
3	Slow scanning speed.	Rapid scan speeds permit monitoring sample undergoing rapid change.
4	In order to improve resolution only a small amount of the IR beam may be allowed to pass through the slits.	A much larger beam may be used at all times. Data collection is easier.
5	Only radiation of a narrow frequency range falls on the detector at any one time .	All frequencies of radiation fall on the detector simultaniously.
6	The samples is subject to thermal effect from the focused beam .	The sample is not subject to thermal effects.
7	Less sensitive, time consuming.	High sensitivity ,precision & faster .
06/04/	16 SAGAR SAVALE	7