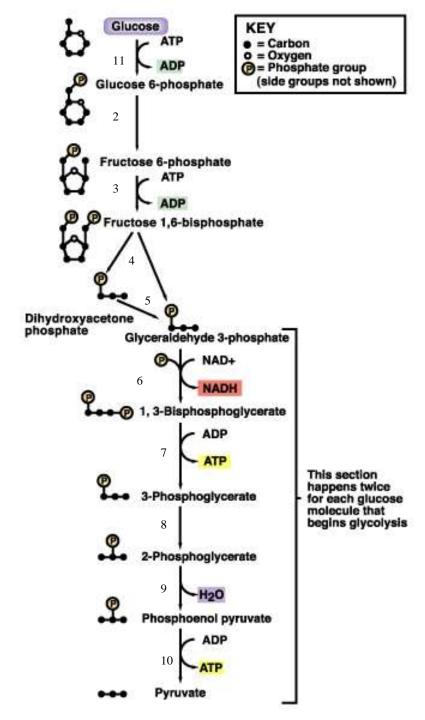
GLYCOLYSIS

Dr. Deepak kumar Rawat Dept. Crop Physiology **Glycolysis** = breakdown of sugars; glycogen, glucose, fructose

Where in body?


Where in cell?

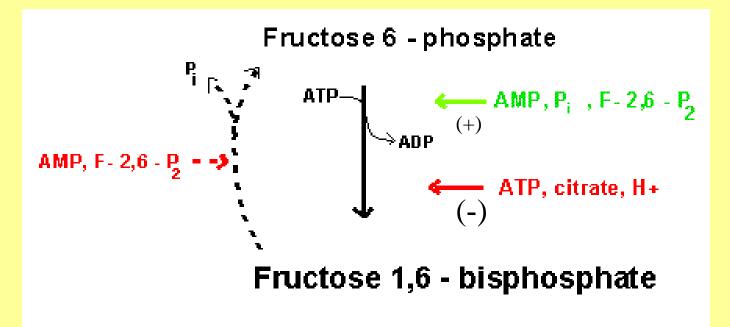
What are the inputs?

What are the outcomes?

Oxygen required?

endergonic rxns exergonic rxns coupled reactions oxidation/reduction rxns transfer reactions

When do we use glycolysis?


What are the advantages of using glycolysis for energy supply?

What are the disadvantages?

How is glycolysis regulated?

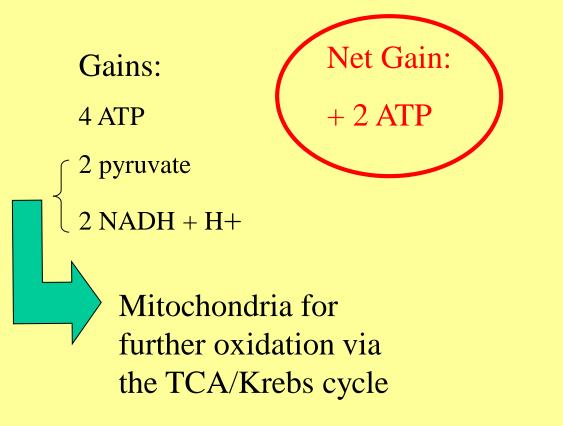
Hexokinase inhibited by glucose –6-phosphate; also there are several isoforms; lowest Km in liver

Phosphofructokinase (PFK)

Pyruvate kinase inhibited by ATP and acetylCoA; activated by fructose 1,6 bisphosphate

Where do the intermediates in glycolysis go?

- G-6-P goes off to make the ribose for nucleotides
- F-6-P -amino sugars-glycolipids and glycoproteins
- G-3-P/DHAP-lipids
- 3PG-serine
- PEP-aromatic amino acids, pyrimidines, asp and asn
- Pyruvate-alanine


This pathway not only important in glucose metabolism--generates intermediates for other important building blocks

G-6-P = glucose 6 phosphate, F-6-P = fructose 6 phosphate, G-3-P = glyceraldehyde 3 phosphate, DHAP = dihydryoxacetonephosphate, 3PG = phosphoglyceraldehyde, Pyr = pyruvate

What are the possible fates of pyruvate?

- •Ethanol (fermentation)
- •Acetyl coA (mammals and others)
 - •TCA/Krebs cycle
- •Oxaloacetate gluconeogenesis
- •Lactate (mammals and others)
 - •End product of anaerobic glycolysis
 - •Gluconeogenesis in liver via the Cori cycle

Energy Balance Sheet for the Oxydation of Glucose via Glycolysis

Losses: 2ATP Glucose Phosphate NAD+ (recycled)

Thank You