ETS CYCLE

Dr.Deepak Kumar Rawat GUEST FACULTY CSAUAT KANPUR •In eukaryotes => Electron transport and oxidative phosphorylation => inner **mitochondrial** membrane.

- These processes => re-oxidize NADH and FADH2 <= from the citric acid cycle (mitochondrial matrix), glycolysis (cytoplasm) and fatty acid oxidation (mitochondrial matrix) and => trap the energy released as ATP.
- **Oxidative phosphorylation** => major source of ATP in the cell.
- In prokaryotes => electron transport and oxidative phosphorylation components => in the plasma membrane.

Redox Potential

- \blacktriangleright Oxidation => loss of electrons.
- \blacktriangleright Reduction => gain of electrons.
- ➢ In chemical reaction :
- \succ if one molecule is oxidized => another must be reduced
- ➢ i.e. oxidation-reduction reaction => transfer of electrons.

- \blacktriangleright when NADH => oxidized to NAD+ => it loses electrons.
- When molecular oxygen => reduced to water => it gains electrons :

- Oxidation-reduction potential, E, (redox potential)
- a measure of affinity of a substance for electrons and
- is measured relative to hydrogen.
- **Positive** redox potential
- substance => higher affinity => electrons than hydrogen
- so would accept electrons from hydrogen,
- e.g., Oxygen, a strong oxidizing agent

- Negative redox potential
- substance has a lower affinity for electrons than does hydrogen
- would donate electrons to H+, forming hydrogen,
- e.g., NADH, a strong reducing agent

For biological systems,

- **standard redox potential** for a substance (E0')
- measured at pH 7 & expressed in volts.
- In oxidation-reduction reaction
- electron transfer is occurring
- total voltage change of the reaction (change in electric potential, ΔE)
 => is the sum of voltage changes of individual oxidation-reduction steps.

• Standard free energy change of a reaction at pH 7 => $\Delta G0'$ => calculated from the change in redox potential $\Delta E0'$ of substrates and products: $\Delta G0' = -n F \Delta E0'$

Where, n -- number of electrons transferred,

- $\Delta E0'$ -- in volts (V),
- $\Delta G0'$ -- in kilocalories per mole (kcal mol-1) and
- **F** -- constant called Faraday (23.06 kcal V-1 mol-1).

- A reaction with a positive $\Delta E0$ ' has a negative $\Delta G0$ ' (i.e., is exergonic).
- Thus for the reaction:

Electron Transport from NADH

```
Comparing the energetic of the oxidation of NADH:
                                                                                           \Delta G^{0} = -52.6 \text{ kcal mol}^{-1}
                    NADH + H<sup>+</sup> + \frac{1}{2} O<sub>2</sub> \rightleftharpoons NAD<sup>+</sup> + H<sub>2</sub>O
and the synthesis of ATP:
                                                                                             \Delta G^{0'} = \pm 7.3 kcal molt
                    ADP + P_i + H^+ \rightleftharpoons ATP + H_2O
Thus, the oxidation of NADH releases sufficient energy to drive the synthesis of several
molecules of ATP.
```

- NADH oxidation and ATP synthesis \rightarrow not occur in a single step.
- Electrons \rightarrow not transferred from NADH \rightarrow oxygen directly.
- Electrons are transferred from NADH → oxygen → along a chain of electron carriers → called electron transport chain (respiratory chain).

Organisation of Electron Transport Chain complexes

Electron Transport Chain

Consists of 3 large protein complexes embedded in inner mitochondrial membrane :

- NADH dehydrogenase complex (Complex I)
- Succinate Q reductase
- The cytochrome bc1 complex (Complex II)
- cytochrome oxidase (Complex III)

- Electrons flow from NADH to oxygen through these three complexes
- ➢ Each complex contains → several electron carriers → work sequentially → carry electrons down the chain.
- 2 free electron carriers are also needed to link these large complexes:
- Ubiquinone {coenzyme Q (CoQ)}
- cytochrome c

• NADH and FADH2 are **oxidized** by electron transport through \rightarrow respiratory chain \rightarrow Synthesis of ATP.

• Energy liberated by electron transport => used to create a proton gradient across the mitochondrial inner membrane => that is used to drive ATP synthesis (chemiosmotic hypothesis) \rightarrow in presence of <u>ATP</u> synthase.

• Thus the proton gradient couples electron transport and ATP synthesis .

(not a chemical intermediate as in substrate level phosphorylation.)

(enzyme \rightarrow originally \rightarrow ATPase because \rightarrow without input of energy from electron transport \rightarrow the reaction can reverse and actually hydrolyzes ATP.)

Summary

- Electron transport down the respiratory chain \rightarrow from NADH oxidation => causes H+ ions to be pumped out \rightarrow into the inter membrane space by three H+ pumps \rightarrow NADH dehydrogenase, cytochrome bc1 complex and cytochrome oxidase.
- Free energy change => in transporting an electrically charged ion =>
- across a membrane => leads to formation of **electrochemical proton**

gradient.

- The pumping out of H+ ions → generates a higher concentration of H+ ions → in inter membrane space and an electrical potential → the side of the inner mitochondrial membrane facing the inter membrane space → positive.
- Protons flow back \rightarrow mitochondrial matrix according to electrochemical gradient through ATP synthase \rightarrow drives ATP synthesis.
- The ATP synthase is driven by proton-motive force → which is the sum of pH gradient (the chemical gradient of H+ ions) and membrane potential (electrical charge potential across the inner mitochondrial membrane).

- FADH2 is re oxidized → via ubiquinone → its oxidation causes H+ ions to be pumped out only by the cytochrome bc1 complex and cytochrome oxidase → so the amount of ATP made from FADH2 is less than from NADH.
- Measurements → show that 2.5 ATP molecules are synthesized per NADH oxidized whereas 1.5 ATPs are synthesized per FADH2 oxidized.

Summary of Electron Flow

THANK YOU