Plant hormones on plant growth and development by Dr. Pawan Kumar Goutam

#### **Plant Growth and Development**

Hormones diffuse throughout the plant to promote growth and development.



#### What is a Plant Hormone?



A naturally-occurring compound which regulates change in physiology, *growth* or development of the plant.

### **5 Types of Plant Hormones**

- I. Auxin
- II. Cytokinin
- III. Gibberellin
- IV. Abscisic Acid
- V. Ethylene



### Auxin

| Role of<br>Hormone    | Cell elongation (increase cell size)                                 |
|-----------------------|----------------------------------------------------------------------|
| Site of<br>Production | Shoot Tips                                                           |
| Effect of<br>Hormone  | Growth of plant in response to the environment, production of roots. |

Tropism: a plant's response to environment

Phototropism- response to <u>light</u>

Geotropism-response to gravity

Thigmotropism-response to <u>touch</u>

# **Auxin Growth Effects**

Stimulates Adventitious <u>Root</u> Formation.

Adventitious roots grow from stems or leaves rather than from the original root system of the plants.

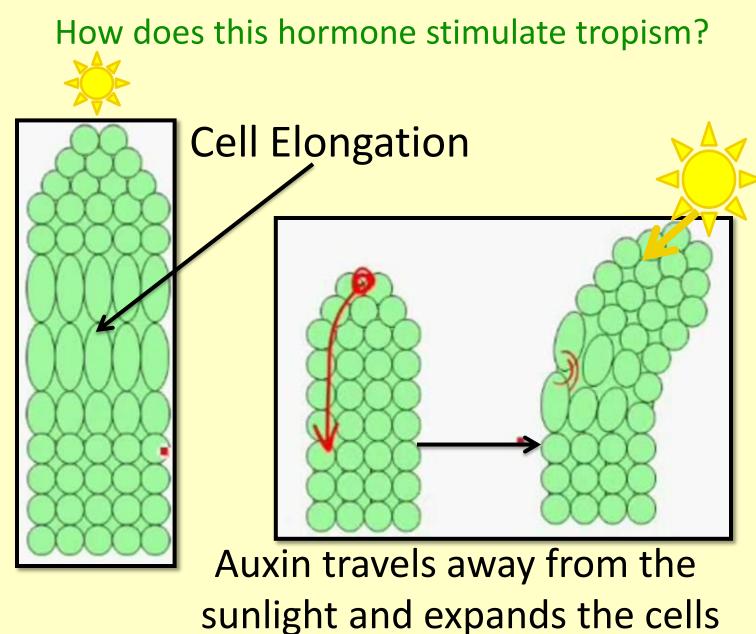
*This is especially useful when cutting and transplanting plants.* 





## **Auxin Growth Effects**

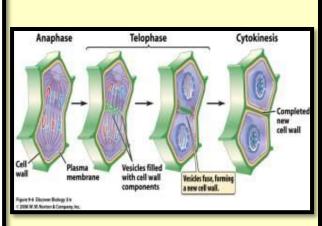
**Tropisms**-How a plant grows in response to the environment






Phototropism-light




#### Auxin



# Cytokinin

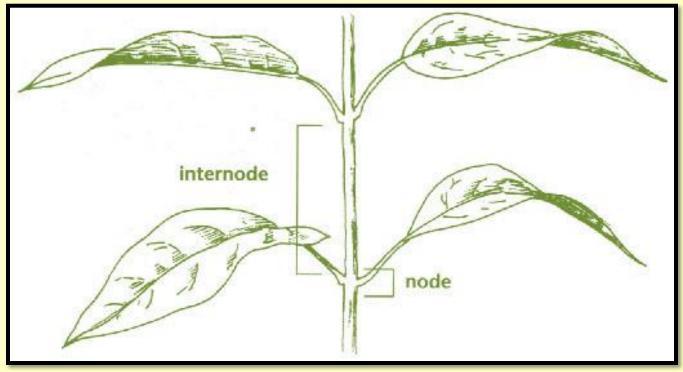
| Role of<br>Hormone    | Cell division (increase number of cells)                                     |
|-----------------------|------------------------------------------------------------------------------|
| Site of<br>Production | Root Tips                                                                    |
| Effect of<br>Hormone  | Mitosis of new cells;<br>Stimulates seed germination and new<br>shoot growth |







# **AUXIN** stimulates the production of **roots**.


# **<u>CYTOKININ</u>** stimulates the production of **shoots**.

# Gibberellin

| Role of<br>Hormone    | Internode Elongation (height)                                                                                   |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|
| Site of<br>Production | Root and Shoot Tips                                                                                             |
| Effect of<br>Hormone  | Controls yearly cycles (flowering/bolting,<br>seeding and dormancy exiting)<br>Rapid growth of stems and seeds. |



### **Internode Elongation**



Internode: the part of the plant between two nodes or joints.

Node: the part of the stem where stems leaves and buds emerge; point at which stems intersect and branch.



#### **Gibberellin and Cycle Control** How gibberellin in a plant recognizes seasonal changes Photoperiod: a plant's recognition of daylight length in a 24 hour period.

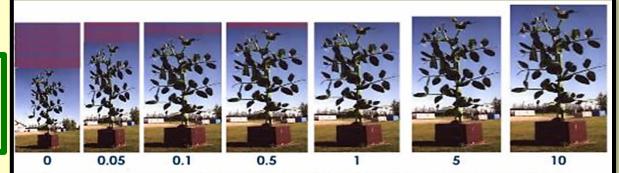


As daylight increases in the spring, the plant recognizes a longer photoperiod. **Gibberellin** triggers the plant to exit dormancy.

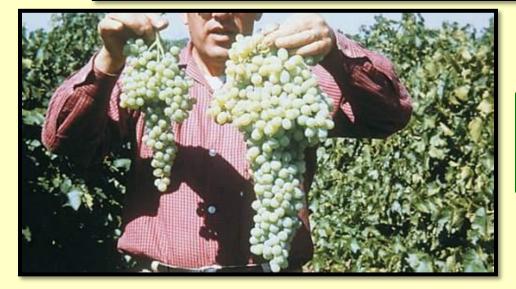


# Why is it called Gibberellin?

Japanese rice farmers discovered a fungus (Gibberella fujikuroi) that caused an increase in this hormone.


From this, they learned that plants have a hormone that causes shoot and seed growth.



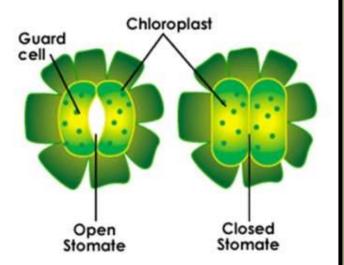

They named this hormone, "Gibberellin", after the fungus.

### **Gibberellin Growth Effects**

Increases plant height



The influence of gibberellic acid(GA) on the growth of variety Meteor drarf pea. The plant on the left received no GA and shows the typical dwarf habit. The remaining plants were treated with GA; the dose per plant in micrograms is shown. With doses up to 5 micrograms there is increased growth of the stems with increase in GA dosage. This is the principle of the dwarf pea assay of gibberellins.




Increases fruit size

# **Abscisic Acid**

| Role of<br>Hormone    | Dormancy                                                                                                                 |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|
| Site of<br>Production | Chloroplasts                                                                                                             |
| Effect of<br>Hormone  | Enters dormancy: (leaves drop off trees,<br>seeds fall, the stomata close to<br>reduce water loss during drought stress) |





#### **Abscisic Acid** Abscisic Acid in a plant recognizes seasonal changes

#### Dormancy: a period of no growth



As daylight decreases in the winter, the chloroplasts in the plant recognize a shorter photoperiod.

#### **Abscisic Acid**

triggers the plant to enter dormancy.

The flowers, seeds and leaves fall from the trees

# Ethylene

| Role of<br>Hormone    | Ripening and Death                                                            |
|-----------------------|-------------------------------------------------------------------------------|
| Site of<br>Production | Ripening fruits, aging flowers, germinating seeds and wounded tissues         |
| Effect of<br>Hormone  | Stimulates fruits to ripen, flowers to enter senescence (to grow old and die) |

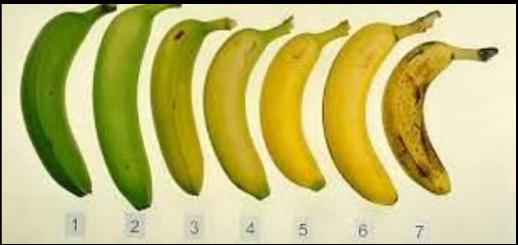


# What causes my fruits and veggies to go bad?

#### The answer is ETHYLENE!



Ethylene is the only plant hormone that exists in a **gas** form.

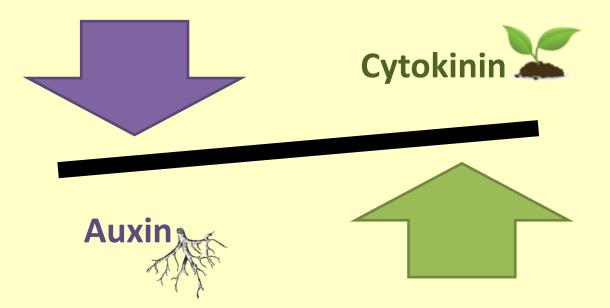

It can be synthesized from anywhere in the plant. It can even diffuse outside the origin plant and affect another plant nearby.

# Is Ethylene good or bad?

A gas that speeds up plant death?!! How is this good news?!

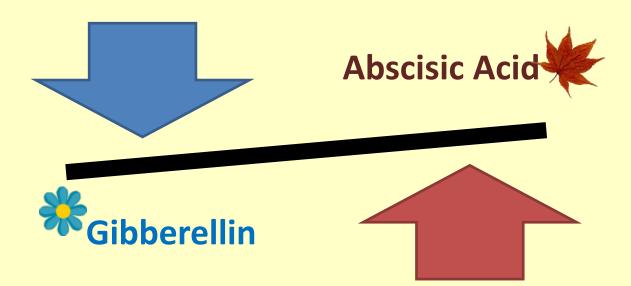


Examples: flowers or fruit that are not "ripe" need ethylene to reach their peak



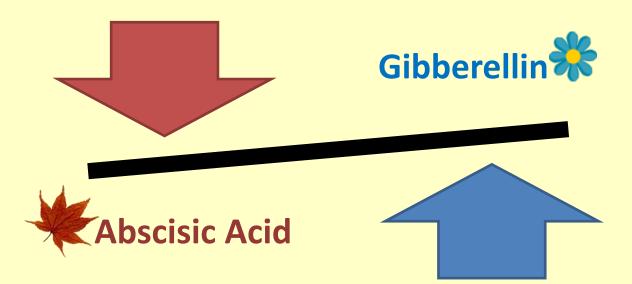

If the amount of Auxin is greater than Cytokinins...




Shoots grow less rapidly, while root growth is dramatically increased

If the amount of Cytokinins is greater than Auxin...




Shoot growth is dramatically increased, while roots grow is less rapidly.

If the amount of Cytokinins is greater than Auxin...



Flowers are no longer blooming and leaves begin to fall from the trees.

If the amount of Cytokinins is greater than Auxin...



**Green leaves** and **flowers** begin to regrow. This usually occurs in the spring time.

### In summary...

| Auxin         | <ul> <li><u>Produces Roots</u></li> <li>Cell elongation</li> <li>Acts through tropism responses</li> </ul> |
|---------------|------------------------------------------------------------------------------------------------------------|
| Cytokinin     | <ul> <li><u>Produces new Shoots</u></li> <li>Mitosis of new cells</li> <li>Seed Germination</li> </ul>     |
| Gibberellin   | <ul> <li><u>Promotes Internode elongation</u></li> <li>Controls yearly cycles</li> </ul>                   |
| Abscisic Acid | <ul> <li><u>"Dormancy hormone"</u></li> <li>Causes leaves to drop and stomatas to close</li> </ul>         |
| Ethylene      | <ul> <li><u>"Death Hormone"</u></li> <li>Speeds up ripening and senescence</li> </ul>                      |

#### Thank you