Soil Biology and Fertility (NRM-213)

Instructor Dr. A. K. Sachan Professor

Presented By Dr. Anurag Dhankar Teaching Associate

Department of Soil Science and Agricultural Chemistry C.S.A UNIVERSITY OF AGRICULTURE AND TECHNOLOGY KANPUR(U.P.) 208002

Microorganisms as indicators of soil health

Presented by ADITYA KUMAR ID .NO-10-515-001

Introduction

- Soil health is the result of continuous conservation and degradation processes and represents the continued capacity of soil to function as a vital living ecosystem.
- A unique balance of chemical, physical and biological components contribute to maintaining soil health.

- Microbial indicator- A microbial parameter that represents properties of the environment which can be interpreted beyond the information that the measured or observed parameter represents by itself
- Environmental indicators must fulfil the following three basic criteria.
 - Policy relevance and utility for users
 - Analytical soundness
 - Measurability
- Criteria specific for soil health indicators
- 1. Correlated with ecosystem processes
- 2. Integrated with soil physical, chemical, and biological properties
- 3. Cost effectiveness
- 4. Responsive to variations in management and climate at an appropriate time scale
- 5. Compatible with existing soil data bases .

End point of soil health	Soil ecosystem parameter	Proposed microbial indicator
Atmospheric balance	C-cycling	Methane oxidation
	Biomass	Microbial biomass (direct method)
	C-cycling	Decomposition of organic matter
Soil ecosystem health	N-cycling	N-mineralisation
	Biodiversity	Genetic diversity Functional diversity Structural diversity
	Key species	Mycorrhiza
	C-cycling	Decomposition of organic matter
Soil microbial commu- nity health	Microbial activity	Bacterial DNA / protein synthesis
	Biodiversity	Genetic diversity Functional diversity Structural diversity
	Bioavailability	Biosensor bacteria
Leaching to groundwater	N-cycling	N-mineralisation
or surface run-off	Bioavailability	Biosensor bacteria
Diant beath	N-cycling	N-mineralisation
Plant health	Key species	Mycorrhiza
Animal bootth	Biomass	Protozoa biomass
Animai nealth	Bioavailability	Antibiotic-resistant bacteria
l lumon hoolth	Bioavailability	Antibiotic-resistant bacteria
Human nealth	Key species	Human pathogens

Methods of measurement

1.in vitro measurements

Example-soil respiration, chloroform fumigation incubation method(CFI) ,chloroform fumigation extraction method (CFE), Substrate induced respiration (SIR), N-mineralisation, nitrification, denitrification, MPN and other growth-based methods

2. In situ measurements

- *based either on direct measurements* in the field or fixed samples analysed in the laboratory

Example- gas emissions, phospholipid fatty acid (PLFA), organic matter decomposition, thymidine and leucine incorporation, shortterm enzyme assays and most molecular methods

- **phospholipid fatty acid (PLFA)** analysis provides information about **soil microbial biomass fungalbacterial ratio, biodiversity and occurrence of key species**
- Substrate induced respiration (SIR) provides measurement of basal respiration and soil biomass.
- carbon utilisation pattern (BIOLOGTM) provides a profile of the microbial community and information on potential metabolic capacity, which together comprise functional diversity.

Indicators of biodiversity

End points	Soil ecosystem parameter	Microbial indicators
Soil ecosystem health Soil microbial commu- nity health	Biodiversity	Genetic diversity Functional diversity Structural diversity

- Diversity of a microbial community is often described by the Shannon-Weaver index (H')
- The genetic diversity of soil microorganisms is an indicator of the genetic resource.

Microbial genetic diversity	Methods of study	
Bacterial genetic diversity	Diversity of the 16S rDNA genes by	
	- PCR-DGGE	
	- T-RFLP	
	- Terminal Restriction Fragment Length Polymorphism (T-RFLP)	
Fungal genetic diversity	1. Number and morphology of fruiting	
	bodies.	
	2. Molecular methods based on 18S	
	rDNA by - PCR-DGGE	
	- PCRTGGE	
Protozoan genetic diversity	1. Taxonomic features	
	2. Molecular methods- by PCR-DGGE	
	targeting an 18S rDNA fragment	
	(specific to <i>Kinetoplastida</i>)	

 Functional diversity of microbial populations in soil may be determined by either expression of different enzymes or diversity of nucleic acids within cells.

Microbial functional diversity	Methods of study	
Carbon utilisation patterns	(BIOLOG TM assay)	- Result of the assay is a qualitative physiological profile of the potential functions within the microbial community.
Enzyme pattern	Incubation of the soil extract with commercial fluorogenic enzyme substrates (4-methylumbelliferin (MUF) and 4-methylcoumarinyl- 7-amide (MC) or colometric substrates (remazol brilliant blue, p- nitrophenol or tetrazolium salt) coupled with specific compounds of interest (e.g. cellulose or phosphate).	
Diversity of mRNA	Reverse transcription PCR(RT-PCR) method	nucleotide sequences of mRNA molecules reflect the type of enzymes synthesised

Structural diversity

- fingerprint of the relative Phospholipid fatty acids (PLFAs) composition of the resident microbial community.
- PLFAs are extracted from soil samples and subsequently analysed by gas chromatography
- ratio of oligotrophs to copiotrophs reflect the nutrient stress tolerance of the species present in soil.
 - **High ratio**, e.g. dominance of oligotrophs indicate stable environmental conditions with low substrate availability.
 - **low ratio**, e.g. dominance of copiotrophs indicate an environment regularly receiving input of organic rich substrate, e.g. addition of sewage sludge or pesticides.
- The ratio of oligotrophs to copiotrophs can be determined by colony appearance on agar substrates or rRNA-expression in bacterial microcolonies.

Indicators of carbon cycling

End points	Soil ecosystem parameter	Microbial indicators
Soil ecosystem health Soil microbial commu- nity health Atmospheric balance	Carbon cycling	Soil respiration Organic matter decom- position Soil enzymes Methane oxidation

Indicators	Methods of study	
Soil respiration	CO2 production	indicator of pesticide and heavy
	O2 consumption	metal toxicity.
	metabolic quotient (qCO2)	microbial respiration rate
		(measured as evolution of CO2) per
		unit microbial biomass
Organic matter decomposition	Field incubation of different ty	pes of plant litter or more
	standardised pieces such as co	otton strips and wood sticks
Soil enzymes	1.Enzyme specific assays	Early indicators of
	2.Hydrolysis of the	, changes in soil health
	fluorescent fluorescein	
	diacetate	
	(protease, lipase, esterase)	
	3.dye reaction followed by a	
	spectrophotometric measurement	
Methane oxidation	1. fluorescent <i>in situ hybridisation</i>	indicator of potential
	(FISH)	greenhouse gas consumption.
	2.standardgrowth-dependent	
	MPN counts	
	3.PCR-DGGE using	
	methanotrophs-specific 16S rDNA	N
	primers	

Soil enzymes as indicators of soil health.

Soil enzyme	Enzyme reaction	Indicator of
Dehydrogenase	Electron transport system	Microbial activity
Beta-glucosidase	Cellobiose hydrolysis	C-cycling
Cellulase	Cellulose hydrolysis	C- cycling
Phenol oxidase	Lignin hydrolysis	C- cycling
Urease	Urea hydrolysis	N- cycling
Amidase	N-mineralisation	N- cycling
Phosphatase	Release of PO_4^-	P- cycling
Arylsulphatase	Release of SO_4^-	S- cycling
Soil enzymes	Hydrolysis	* General OM degradative enzyme activities

Indicators of nitrogen cycling

End points	Soil ecosystem parameter	Microbial indicators
Soil ecosystem health		
Plant health		N-mineralisation
Leaching to groundwa-	Nitrogon eveling	Nitrification
ter	Nittogen cycling	Denitrification
Surface run-off		N-fixation
Atmospheric balance		

Global cycling of nitrogen

Indicators	Methods of study	
N-mineralisation	accumulation of NH4 + in soil slurry under aerobic conditions	reflects the potential N- mineralisation in soil
Nitrification	Ammonium oxidising assay (soil slurry is incubated with excess ammonium and chlorate)	reflect the population size of the nitrifiers
Dentrification	Acetylene inhibition (nitrous oxide is measured by gas chromatography.)	 1.Indicate deposition of ammonia in N-limited habitats 2. historical anaerobic situations
N-fixation		
1.Rhizobium	1.Simple pot test 2. Molecular method - plasmid profiles and insertion sequence fingerprints, 16S-23S rDNA spacer sequences, PCR detection of specific genes <i>,colony hybridisation , RFLP</i> <i>and RAPD</i> .	symbiotic
2. Cyanobacteria	 MPN methods nitrogenase activity by acetylene reduction assay 	-non-symbiotic - indicators of heavy metal contamination

Indicators of soil biomass

End points	Soil ecosystem parameter	Microbial indicators
Soil accession health	Soil biomass	Microbial biomass
son ecosystem nearth		Protozoan biomass

Indicators	Methods of study	
Microbial biomass	 1.Direct (a) Microscopy (b)determinations of specific membrane phospholipid fatty acids (PLFAs)) 2. indirect (a) chloroform fumigation incubation method(CFI) , (b)chloroform fumigation extraction method (CFE) (c)substrate induced respiration (SIR). 	 fraction of the soil responsible for the energy and nutrient cycling and the regulation of organic matter transformation. The release of CO2 after fumigation is the result of germinating microbial spores utilising the C substrate provided by the killed microbial cells. substrate induced respiration measures only the metabolically active portion of the microbial biomass
fungal biomass	 (a)quantification of fungal specific membrane molecules such as ergosterol or specific phospholipids (PLFAs) except oomycetous fungi (b)total hyphal length (c)Quantification of enzyme activities such as fluorescein diacetate hydrolytic activity (FDA) or N-acetyl-beta-glucosaminidase (Nag) activity 	 The fungal-bacterial biomass ratio can also be determined directly from measurements of fungal-specific and bacterial-specific PLFAs higher fungal-bacterial biomass ratio is typical of long-term unfertilised soil.
Protozoan biomass	 (a)counting directly by use of an inverted microscope (b) extraction followed by a MPN counting based on a growth medium 	 applied to heavy metal toxicity testing.

Indicators of microbial activity

End points	Soil ecosystem parameter	Microbial indicators
Soil ecosystem health		Bacterial DNA synthesis Bacterial protein synthe-
Soil microbial commu-	Microbial activity	sis
nity health		RNA measurements
		Bacteriophages

Indicators	Methods of study		
Bacterial DNA	incorporation of 3H- or 14C - thymidine into bacterial DNA	extensively used in aquatic environments	
Bacterial protein	incorporation of 3H or 14C	More accurate than that of	
synthesis	leucine	DNA synthesis due to	
		cell.	
RNA	1. fluorescent in situ hybridisation (FISH)		
measurements	2. Reverse Transcriptase Polymerase Chain Reaction (RT- PCR)		
Bacteriophages	standard method of extraction	-indicator of the activity	
	followed by a plaque-assay with specific host bacteria, e.g.	of specific soil bacteria.	
	Pseudomonas , Bacillus ,Rhizobium		
	, Azospirillum brasilense, Serratia		
	liquefaciens		

Key species

End points	Soil ecosystem parameter	Microbial indicators
Soil ecosystem health Plant health Animal health Human health	Key species	Mycorrhiza Suppressive soil Human pathogens

Indicators	Methods of study	
Mycorrhiza	 1.extraction of spores from soil samples and subsequent counting in a microscope 2. direct detection- 18S rDNA PCR, nested PCR and AM-specific PLFAs 	 1.ectomycorrhizal (mainly forest trees), 2.arbuscular mycorrhizal (terrestrial plants) 3.ericoid mycorrhizal (heather) fungi. Helps in increased P availability due to extra-radical mycelium.
Suppressive soil	inoculation of target-plant seeds directly into the test soil or into a pathogen-infested test soil	able to suppress specific plant diseases by inherent biotic and abiotic factors which acts as indicator of plant health.
Human pathogens	1.Cultivation - XLD agar for Salmonella and Shigella and MacConkey agar for isolation of coliform. 2.Molecular- quantitative PCR and specific fluorescent oligo-nucleotide probes.	-Source -amendment with manure and sewage sludge. - indicator of human health e.g - Escherichia coli

Indicators of bioavailability

End points	Soil ecosystem parameter	Microbial indicators
Soil microbial commu- nity health Leaching to groundwa- ter Surface run-off	Bioavailability	Biosensor bacteria Plasmid-containing bacteria Antibiotic-resistant bacteria Catabolic genes

Indicators	Methods of study	
Biosensor bacteria Plasmid-containing bacteria	fibre optic linked membrane bound biosensor probes facilitate <i>in situ ecotoxicity</i> <i>monitoring of soil</i> 1. endogenous approach - plasmids extraction from soil bacteria on agar plates followed	designed to respond to certain stress situations (e.g. toxicity) through the use of reporter genes e.g- mercury,chromate, zink toxicity higher in polluted soils compared to agricultural soils
	by a visualisation of the plasmids on agarose gels 2.exogenous approach. plasmid free bacteria are mixed with a soil sample and allowed time to conjugate naturally occurring plasmids from the indigenous bacteria. Then Plasmids are extracted and visualised as in the endogenous approach.	
Antibiotic resistant bacteria	 1.Cultivation on selective growth media containing antibiotics (tetracycline ,kanamycin, etc.) 2.Molecular methods- PCR and molecular gene probe analysis 	More in Urban effluents - indicator of industrial and urban pollution
Incidence and expression of catabolic genes	 1.Conventional culturing of degradative microorganisms 2.activity measurements of specific degradative key enzymes 3.molecular methods for detection of catabolic genes 	gives information on the ability of a soil to modify or degrade xenobiotic compounds.

Conclusion

- Soil microorganisms appear to be very suitable and sensitive early warning indicators or predictive tools in soil health monitoring.
- soil microorganisms respond rapidly to stress by adjusting
 - (i) activity rates
 - (ii) biomass
 - (iii) community structure.

- Microorganisms as indicators of soil health NERI Technical Report No. 388
- Bloem, J. and Breure, A. M. (2002). Microbial indicators. In: Bioindicators / Biomonitors.
 Principles, Assessment, Concepts. Breure, A. M., Markert, B.A., and Zechmeister, H. G. (eds.).
 Elsevier, Amsterdam
- M. Schloter, O. Dilly, J.C. Munch(2003) Indicators for evaluating soil quality, Journeal - Agriculture, Ecosystems and Environment

Thank you