Fundamental of Soil Science (SAC-111)

Instructor
Dr. A. K. Sachan
Professor

Presented By Dr. Anurag Dhankar Teaching Associate

Department of Soil Science and Agricultural Chemistry C.S.A UNIVERSITY OF AGRICULTURE AND TECHNOLOGY KANPUR(U.P.) 208002

pH, Complexation and Solubility Equilibria

Since so many analytical procedures involve solution chemistry an understanding of the principles is essential

<u>pH</u>, Complexation and Solubility Equilibria

- Definitions
- Equilibrium constants
- Equilibria in analytical reactions
- Solvents in analytical chemistry
- Acid-base equilibria
- Solubility equilibria

Acid

A species which donates protons in a reaction or accepts electrons

Base

A species which accepts protons in a reaction or donates electrons

Complex

A compound which is formed in a complexation reaction between two or more species which are capable of independent existence

Ligand

A species with at least one basic site which can participate in complex formation

Strong Electrolyte

A compound which is almost completely dissociated in solution

Weak Electrolyte

A compound which remains significantly undissociated in solution

• 'p' Notation

$$pX = -log_{10}X$$

 Used for convenience in handling quantities which vary in magnitude through many powers of ten

[H₃O⁺ concentration of an aqueous solution may vary from 10 mol dm⁻³ to 10^{-14} mol dm⁻³. Expressed in the 'p' notation, this becomes pH = -1 to pH = 14]

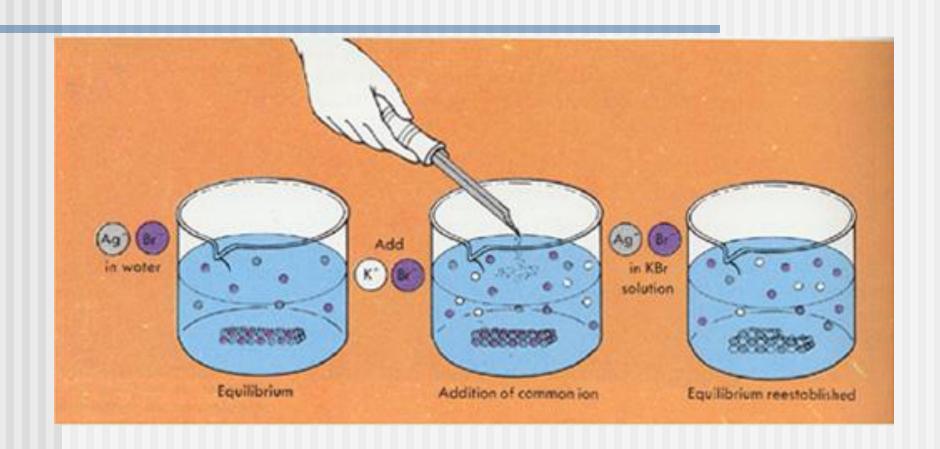
Equilibrium Constants

An equation may be written for a generalized reaction

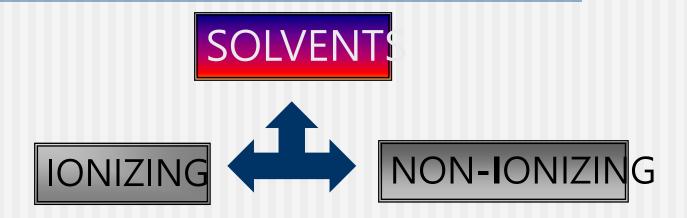
$$aA + bB + cC + = xX + yY + zZ +$$

[a, b, c, x, y, z are numbers indicating its stoichiometry] The position of equilibrium is expressed by the thermodynamic equilibrium constant K_e which is defined by

The square brackets refer to the activity of the component


Equilibria in Analytical Reactions

- Often it may be necessary to shift the position of equilibrium in a reaction to obtain larger quantities of desired product
- One widely used method of achieving a shift is removal of one of the products from the system


[by distillation or precipitation]

Equilibria in Analytical Reactions

- In these circumstances to maintain K_e the reactants will be steadily converted to products until one or all are exhausted
- Alternative approach uses an excess of the reagent which in most cases causes a shift towards the products of the reaction this is the "common ion effect"

Solvents in Analytical Chemistry

Promote ionization of a solute

Do not promote ionization

As always, such divisions are not entirely satisfactory

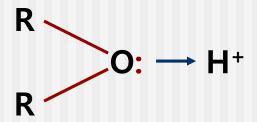
Some Typical Solvents

Ionizing	Intermediate	Non-ionizing
Water HCl acid Acetic acid Ammonia SO ₂ Amines	Alcohols containing up to 4 carbon atoms	Chloroform Hexane Benzene Ethers Esters

Ionizing Solvents

- Some ionizing solvents are of major importance in analytical chemistry, others of peripheral interest
- Subdivided into protonic solvents [water and the common acids] &
- Non-protonic solvents [SO₂ and BrF₃]
- lonizing solvents have one property in common, self ionization, reflecting their ability to produce ionization of a solute
- Equilibrium constants for these reactions are known as "self-ionization constants"

Some Self-ionizing Equilibria


2H ₂ O	= H ₃ O ⁺ + OH ⁻
2CH ₃ COOH	= CH ₃ COOH ₂ ⁺ + CH ₃ COO ⁻
2HCl	$= H_2CI^+ + CI^-$
2NH ₃	$= NH_4^+ + NH_2^-$
2RNH ₂	= RNH ₃ ⁺ + RNH ⁻

Non-ionizing Solvents

- Major uses of non-ionizing solvents in chemical analysis are two-fold
- May simply provode a media for dissolution & reaction of covalent materials
- Or, may play a <u>more active part</u> in a chemical process

Non-ionizing Solvents

 O₂-containing organic solvents can be used to effect solvent extraction of metal ions from acid aqueous solutions

 Lone pair of electrons of O atom forms a dative bond with proton followed by the extraction of the metal ion as an association complex

Acid – Base Equilibria

- Lowry-Bronsted concept provides basis for interpretation of reactions in protonic solvents
- This is summarized by the generalized equilibrium:

$$AH + B = A^- + BH^+$$

AH = Acid, B = Base for forward reaction

A⁻ = Conjugate base, BH⁺ = Conjugate acid

for the reverse reaction

Acid – Base Equilibria

Dissociation of a typical acid in water may be represented by:

$$AH + H_2O = A^- + H_3O^+$$

Water acts as a base and H₃O⁺ as conjugate acid

$$AH + H_2O = A^- + H_3O^+$$

The equilibrium constant K_a known as "acid dissociation constant" is given by

In the case of a base a parallel treatment may be used in which the water acts as an acid

$$B + H_2O = BH^+ + OH^-$$

and K_b , the "base dissociation constant", is given by

If the concentrations are expressed in mol dm⁻³, K_a and K_b have the same units

- Solubility of solids in liquids an important process for an analyst, who frequently uses dissolution as a primary step in an analysis or uses precipitation as a separation procedure
- Dissolution of a solid in a liquid is favored by entropy change
- However, it is necessary to supply energy in order to break up the lattice [For ionic solids this may be several hundred kj per mole]

- After break up of lattice, solute species are dispersed within the solvent, requiring further energy and producing some weakening of solvent-solvent interactions
- Energy needed to bring about this change can only be supplied by the solvation of the solute species

- The solvation energy may be in the range – 400 to – 4000 kj mol⁻¹ for aqueous systems containing ionic solids
- Non-ionizing solvents have much lower ability to produce solvation & insufficient energy is available to break up lattices & produce a solution

Solvent-solute interactions between an ionizing solvent and a covalent solid are small, but may be large enough to overcome the low lattice energy for many solids, although their solubility will still be very low as a result of the associated nature of the solvent

Dissolution equilibrium for an ionic compound AB may be summarized by:

AB (solid) + Solvent =
$$A^+$$
 (solv) + B^- (solv)

Solubility Products

Solubility of a sparingly soluble salt is expressed by the equilibrium constant for the reaction, for e.g.

Both [AB] and [S] are unchanged in solubility reactions of sparingly soluble salts, hence the above equation may be rewritten as

$$K_{\rm sp} = [A^+][B^-]$$

 $K_{\rm sp}$, known as **solubility product**, is widely used as a measure of the solubility of sparingly soluble salts

Raising temperature will increase K_{sp} together with the solubility of the solid

Have a good day!

Next Lecture
Theory of Indicators